

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 001-97157 Rev. *D Revised October 4, 2017

Features

▪ 9-bit address mode with hardware address detection

▪ Baud rates from 110 to 921600 bps or arbitrary up to 4 Mbps

▪ RX and TX buffers = 4 to 65535

▪ Detection of Framing, Parity, and Overrun errors

▪ Full Duplex, Half Duplex, TX only, and RX only optimized hardware

▪ Two out of three voting per bit

▪ Break signal generation and detection

▪ 8x or 16x oversampling

General Description

The UART provides asynchronous communications commonly referred to as RS232 or RS485.
The UART Component can be configured for Full Duplex, Half Duplex, RX only, or TX only
versions. All versions provide the same basic functionality. They differ only in the amount of
resources used.

To assist with processing of the UART receive and transmit data, independent size configurable
buffers are provided. The independent circular receive and transit buffers in SRAM and hardware
FIFOs help to ensure that data will not be missed. This allows the CPU to spend more time on
critical real time tasks rather than servicing the UART.

For most use cases, you can easily configure the UART by choosing the baud rate, parity,
number of data bits, and number of start bits. The most common configuration for RS232 is often
listed as “8N1,” which is shorthand for eight data bits, no parity, and one stop bit. This is the
default configuration for the UART Component. Therefore, in most applications you only need to
set the baud rate. A second common use for UARTs is in multidrop RS485 networks. The UART
Component supports 9-bit addressing mode with hardware address detect, as well as a TX
output enable signal to enable the TX transceiver during transmissions.

UARTs have been around a long time, so there have been many physical-layer and protocol-
layer variations over time. These include, but are not limited to, RS423, DMX512, MIDI, LIN bus,
legacy terminal protocols, and IrDa. To support the commonly used UART variations, the

Universal Asynchronous Receiver Transmitter (UART)
2.50

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 2 of 56 Document Number: 001-97157 Rev. *D

Component provides configuration support for the number of data bits, stop bits, parity, hardware
flow control, and parity generation and detection.

As a hardware-compiled option, you can choose to output a clock and serial data stream that
outputs only the UART data bits on the clock’s rising edge. An independent clock and data
output is provided for both the TX and RX. The purpose of these outputs is to allow automatic
calculation of the data CRC by connecting a CRC Component to the UART.

When to Use a UART

Use the UART any time a compatible asynchronous communications interface is required,
especially RS232 and RS485 and other variations. You can also use the UART to create more
advanced asynchronous based protocols such as DMX512, LIN, and IrDa, or customer or
industry proprietary.

Do not use a UART in those cases where a specific Component has already been created to
address the protocol. For example if a LIN or MIDI Component is provided, it has a specific
implementation providing both hardware and protocol layer functionality. The UART is not
needed in this case (subject to Component availability).

PSoC 4 Glitch Avoidance at System Reset

For PSoC 4 devices, use the following method to avoid low impulses on the TX output terminal
when coming out of System Reset. This is important if you’re concerned with TX pin activity at
either chip startup or when coming out of Hibernate mode:

1. Connect an external pull-up resistor for the Tx_1 output pin on your device.

2. From the PSoC Creator schematic, open the Tx_1 Pins Configure dialog.

a. On the Pins > General tab, configure Drive mode to "High impedance digital."

b. On the Built-in tab, change CY_SUPPRESS_API_GEN from true to false.

3. In your main code, change the drive mode of the TX_1 pin to "Strong drive" using the
Tx_1_SetDriveMode(Tx_1_DM_STRONG) API, after calling the UART_1_Start() API.

Additional Reading

Refer to the following documents for more information:

▪ AN54460 - PSoC® 3 and PSoC 5LP Interrupts

▪ AN90799 - PSoC® 4 Interrupts

http://www.cypress.com/go/AN54460
http://www.cypress.com/go/AN90799

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 3 of 56

Input/Output Connections

This section describes the various input and output connections for the UART. Some I/Os may
be hidden on the symbol under the conditions listed in the description of that I/O.

Input
May Be
Hidden Description

rx Y The rx input carries the input serial data from another device on the serial bus. This signal
should be synchronized to the BUS_CLK by enabling Input Synchronized parameter in
the related Digital Input Pin Component or by using Sync Component. This input is
visible and must be connected if the Mode parameter is set to RX Only, Half Duplex, or
Full UART (RX + TX).

cts_n Y The cts_n input shows that another device is ready to receive data. It is an active-low
input, (_n). This input is visible if the Flow Control parameter is set to Hardware.

clock Y The clock input defines the baud rate (bit-rate) of the serial communication. The baud-rate
is one-eighth or one-sixteenth the input clock frequency depending on the Oversampling
Rate parameter. This input is visible if the Clock Selection parameter is set to External
Clock. If the internal clock is selected, you must define the desired baud rate during
configuration and PSoC Creator solves the necessary clock frequency.

reset N The reset input resets the UART state machines (RX and TX) to the idle state. This throws
out any data that was currently being transmitted or received. This input is a synchronous
reset that requires at least one rising edge of the clock. The reset input may be left floating
with no external connection. If nothing is connected to the reset line the Component will
assign it a constant logic 0.

Output
May Be
Hidden Description

tx Y The tx output carries the output serial data to another device on the serial bus. This
output is visible if the Mode parameter is set to TX Only, Half Duplex, or Full UART (RX
+ TX). Cypress recommends that you use an external pull-up resistor to protect the
receiver from unexpected low impulses during active System Reset.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 4 of 56 Document Number: 001-97157 Rev. *D

Output
May Be
Hidden Description

rts_n Y The rts output tells another device that your device is ready to receive data. This output is
active-low (_n). The RTS signal goes high when internal FIFO and RX buffer, allocated by
RX Buffer Size parameter (when it is greater than 4), are full. This output is visible if the
Flow Control parameter is set to Hardware.

tx_interrupt Y The tx_interrupt output is the logical OR of the group of possible interrupt sources. This
signal goes high while any of the enabled interrupt sources are true. This output is visible
if the Mode parameter is set to TX Only or Full UART (RX + TX).

rx_interrupt Y The rx_interrupt output is the logical OR of the group of possible interrupt sources. This
signal goes high while any of the enabled interrupt sources are true. This output is visible
if the Mode parameter is set to RX Only, Half Duplex, or Full UART (RX + TX).

tx_en Y The tx_en output is used primarily for RS485 communication to show that your device is
transmitting on the bus. This output goes high before a transmit starts and low when
transmit is complete. This shows a busy bus to the rest of the devices on the bus. This
output is visible when the Hardware TX Enable parameter is selected.

tx_data Y The tx_data output is used to shift out the TX data to a CRC Component or other logic.
This output is visible when the Enable CRC outputs parameter is selected.

tx_clk Y The tx_clk output provides the clock edge used to shift out the TX data to a CRC
Component or other logic. This output is visible when the Enable CRC outputs
parameter is selected.

rx_data Y The rx_data output is used to shift out the RX data to a CRC Component or other logic.
This output is visible when the Enable CRC outputs parameter is selected.

rx_clk Y The rx_clk output provides the clock edge used to shift out the RX data to a CRC
Component or other logic. This output is visible when the Enable CRC outputs
parameter is selected.

Schematic Macro Information

The default UART in the Component Catalog is a schematic macro using a UART Component
with default settings. It is connected to digital input and output Pins Components.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 5 of 56

Component Parameters

Drag a UART Component onto your design and double-click it to open the Configure dialog.

Hardware versus Software Options

Hardware configuration options change the way the project is synthesized and placed in the
hardware. You must rebuild the hardware if you make changes to any of these options. Software
configuration options do not affect synthesis or placement. When you set these parameters
before build time you are setting their initial value, which you can change at any time with the
API provided.

The following sections describe the UART parameters and how they are configured using the
dialog. They also indicate whether the options are hardware or software.

Configure Tab

The dialog is set up to look like a hyperterminal configuration window to avoid incorrect
configuration of two sides of the bus, because the PC using the hyperterminal is quite often the
other side of the bus.

All of these options are hardware configuration options.

Mode

This parameter defines the functional Components you want to include in the UART. This can be
setup to be a bidirectional Full UART (TX + RX) (default), Half Duplex UART (uses half the
resources), RS232 Receiver (RX Only) or Transmitter (TX Only).

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 6 of 56 Document Number: 001-97157 Rev. *D

Bits per second

This parameter defines the baud-rate or bit-width configuration of the hardware for clock
generation. The default is 57600.

If the internal clock is used (set by the Clock Selection parameter), PSoC Creator generates the
necessary clock to achieve this baud rate.

Data bits

This parameter defines the number of data bits transmitted between start and stop of a single
UART transaction. Options are 5, 6, 7, 8 (default), or 9.

▪ Eight data bits is the default configuration, sending a byte per transfer.

▪ The 9-bit mode does not transmit 9 data bits; the ninth bit takes the place of the parity bit
as an indicator of address using Mark/Space parity. Mark/Space parity should be selected
if you are using 9 data bits mode.

Parity Type

This parameter defines the functionality of the parity bit location in the transfer. This can be set to
None (default), Odd, Even, or Mark/Space. If you selected 9 data bits, then select Mark/Space
as the Parity Type.

API control enabled

This check box is used to change parity by using the control register and the
UART_WriteControlRegister() function. The parity type can be dynamically changed between
bytes without disrupting UART operation if this option selected, but the Component uses more
resources.

Stop bits

This parameter defines the number of stop bits implemented in the transmitter. This parameter
can be set to 1 (default) or 2 data bits.

Flow Control

This parameter allows you to choose between Hardware or None (default). When this
parameter is set to Hardware, the CTS and RTS signals become available on the symbol.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 7 of 56

Advanced Tab

Hardware Configuration Options

Clock Selection

This parameter allows you to choose between an internally configured clock or an externally
configured clock or I/O for the baud-rate generation. When set to Internal Clock, the required
clock frequency is calculated and configured by PSoC Creator. In the External Clock mode, the
Component does not control the baud rate but can calculate the expected baud rate.

If this parameter is set to Internal Clock, the clock input is not visible on the symbol.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 8 of 56 Document Number: 001-97157 Rev. *D

Address Mode

This parameter defines how hardware and software interact to handle device addresses and
data bytes. This parameter can be set to the following types:

▪ Software Byte by Byte – Hardware indicates the detection of an address byte
(UART_RX_STS_MRKSPC status) for every byte received. Software must read the byte
and determine if this address matches the device addresses defined as in the Address
#1 or Address #2 parameters or any other additional addresses.

▪ Software Detect to Buffer – Hardware indicates the detection of an address byte
(UART_RX_STS_MRKSPC status). Software, embedded to RX ISR, reads the byte and
determines if this address matches the device addresses defined as in the Address #1 or
Address #2 parameters (uses UART_RX_STS_ADDR_MATCH status). It then copies all
addressed data, along with the address byte, into the RX buffer defined by the RX Buffer
Size parameter. RX Buffer Size should be set manually to greater than 4. Unaddressed
data is read from FIFO, but not written to the buffer.

▪ Hardware Byte By Byte – Hardware detects addressed bytes and forces an interrupt (RX
- On Byte Received) to move all data along with the address from the hardware FIFO into
the data buffer defined by RX Buffer Size. Hardware does not save unaddressed bytes to
the FIFO, and does not generate any interrupt for them.

▪ Hardware Detect to Buffer – Hardware detects addressed bytes and forces an interrupt
(RX - On Byte Received) to move only the data (address byte is not included) from the
hardware FIFO into the data buffer defined by RX Buffer Size. Hardware does not save
unaddressed bytes to the FIFO, and does not generate any interrupt for them.

▪ None – No RX address detection is implemented.

RX Address #1/#2

The RX Address parameters indicate up to two device addresses that the UART may assume.
These parameters are stored in hardware for hardware address detection modes described in
the Address Mode parameter. The hardware for RX Address #2 does not implemented in Half
Duplex mode. The parameters are available to firmware for the software address modes.

Advanced Features

▪ Break signal bits – Break signal bits parameter enables Break signal generation and
detection and defines the number of logic 0s bits transmitted. Valid values include 11 to
14. This option saves resources when set to None.

▪ Enable 2 out of 3 voting per bit – The Enable 2 out of 3 voting per bit parameter
enables or disables the error compensation algorithm. Disabling this option saves
resources. For more information, see the API Memory Usage section of this datasheet.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 9 of 56

▪ Enable CRC outputs – The Enable CRC outputs parameter enables or disables
tx_data, tx_clk, rx_data, and rx_clk outputs. They are used to output a clock and serial
data stream that outputs only the UART data bits on the clock’s rising edge. The purpose
of these outputs is to allow automatic calculation of the data CRC. Disabling this option
saves resources.

Hardware TX Enable

This parameter enables or disables the use of the TX-Enable output of the TX UART. This signal
is used in RS485 communications. The hardware provides the functionality of this output
automatically, based on buffer conditions.

Oversampling Rate

This parameter allows you to choose clock divider for the baud-rate generation.

Software Configuration Options

Interrupts

The Interrupt On parameters allow you to configure the interrupt sources. These values are
ORed with any of the other Interrupt On parameter to give a final group of events that can
trigger an interrupt. The software can reconfigure these modes at any time; these parameters
define an initial configuration.

▪ RX - On Byte Received

(UART_RX_STS_FIFO_NOTEMPTY)

▪ TX - On TX Complete

(UART_TX_STS_COMPLETE)

▪ RX - On Parity Error

(UART_RX_STS_PAR_ERROR)

▪ TX - On FIFO Empty

(UART_TX_STS_FIFO_EMPTY)

▪ RX - On Stop Error

(UART_RX_STS_STOP_ERROR)

▪ TX - On FIFO Full

(UART_TX_STS_FIFO_FULL)

▪ RX - On Break

(UART_RX_STS_BREAK)

▪ TX - On FIFO Not Full

(UART_TX_STS_FIFO_NOT_FULL)

▪ RX - On Overrun Error

(UART_RX_STS_OVERRUN)

▪ RX - On Address Match

(UART_RX_STS_ADDR_MATCH)

▪ RX - On Address Detect

(UART_RX_STS_MRKSPC)

You may handle the ISR with an external interrupt Component connected to the tx_interrupt or
rx_interrupt output. The interrupt output pin is visible depending on the selected Mode
parameter. It outputs the same signal to the internal interrupt based on the selected status
interrupts.

These outputs may then be used as a DMA request source to the DMA from the RX or TX buffer
independent of the interrupt, or as another interrupt, depending on the desired functionality.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 10 of 56 Document Number: 001-97157 Rev. *D

RX Buffer Size (bytes)

This parameter defines how many bytes of RAM to allocate for an RX buffer. Data is moved from
the receive registers into this buffer.

Four bytes of hardware FIFO are used as a buffer when the buffer size selected is equal to 4
bytes. Buffer sizes greater than 4 bytes require the use of interrupts to handle moving the data
from the receive FIFO into this buffer. The UART_GetChar() or UART_ReadRXData() functions
get data from the correct source without any changes to your top-level firmware.

When the RX buffer size is greater than 4 bytes, the Internal RX Interrupt ISR is automatically
enabled and the RX – On Byte Received interrupt source is selected and disabled for use
because it causes incorrect handler functionality.

TX Buffer Size (bytes)

This parameter defines how many bytes of RAM to allocate for the TX buffer. Data is written into
this buffer with the UART_PutChar() and UART_PutArray() API commands.

Four bytes of hardware FIFO are used as a buffer when the buffer size selected equal to four
bytes; otherwise, the RAM buffer is allocated. Buffer sizes greater than four bytes require the use
of interrupts to handle moving the data from the transmit buffer into the hardware FIFO without
any changes to your top-level firmware.

When the TX buffer size is greater than four bytes, the Internal TX Interrupt ISR is
automatically enabled and the TX – On FIFO EMPTY interrupt source is selected and disabled
for use because it causes incorrect handler functionality.

The TX interrupt is not available in Half Duplex mode; therefore, the TX Buffer Size is limited to
four bytes when Half Duplex mode is selected.

Internal RX Interrupt ISR

Enables the ISR supplied by the Component for the RX portion of the UART. This parameter is
set automatically depending on the RX Buffer Size parameter, because the internal ISR is
needed to handle transferring data from the FIFO to the RX buffer.

When the (Rx/Tx) Buffer size is set to 4, the UART Component uses the Datapath's 4-byte deep
Hardware FIFO for data movement. So, to handle any interrupt condition, use an external
interrupt (connect an ISR Component to rx_interrupt or tx_interrupt).

When the (Rx/Tx) Buffer size is set to a value greater than 4, the UART Component uses the
internal interrupts to move the data from Hardware FIFO to a software FIFO. In this case, use
the internal ISR to add custom code to process the data in the "User Code" regions.

Note External interrupts are generated only with respect to the Hardware FIFO.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 11 of 56

Internal TX Interrupt ISR

Enables the ISR supplied by the Component for the TX portion of the UART. This parameter is
set automatically depending on the TX Buffer Size parameter, because the internal ISR is
needed to handle transferring data to the FIFO from the TX buffer.

Clock Selection

When the internal clock configuration is selected, PSoC Creator calculates the needed frequency
and clock source and generates the resource needed for implementation. Otherwise, you must
supply the clock and calculate the baud rate at one-eighth or one-sixteenth the input clock
frequency.

The clock tolerance should be a maximum of ±2 percent. A warning is generated if the clock
cannot be generated within this limit. In that case, you should change the Master Clock in the
DWR or you should use an external crystal-based clock.

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the Component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “UART_1” to the first instance of a
Component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “UART.”

Functions

Function Description

UART_Start() Initializes and enables the UART operation

UART_Stop() Disables the UART operation

UART_ReadControlRegister() Returns the current value of the control register

UART_WriteControlRegister() Writes an 8-bit value into the control register

UART_EnableRxInt() Enables the internal interrupt irq

UART_DisableRxInt() Disables the internal interrupt irq

UART_SetRxInterruptMode() Configures the RX interrupt sources enabled

UART_ReadRxData() Returns the data in the RX Data register

UART_ReadRxStatus() Returns the current state of the status register

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 12 of 56 Document Number: 001-97157 Rev. *D

Function Description

UART_GetChar() Returns the next byte of received data

UART_GetByte() Reads the UART RX buffer immediately and returns the received character and
error condition

UART_GetRxBufferSize() Returns the number of received bytes available in the RX buffer.

UART_ClearRxBuffer() Clears the memory array of all received data

UART_SetRxAddressMode() Sets the software-controlled Addressing mode used by the RX portion of the
UART

UART_SetRxAddress1() Sets the first of two hardware-detectable addresses

UART_SetRxAddress2() Sets the second of two hardware-detectable addresses

UART_EnableTxInt() Enables the internal interrupt irq

UART_DisableTxInt() Disables the internal interrupt irq

UART_SetTxInterruptMode() Configures the TX interrupt sources enabled

UART_WriteTxData() Sends a byte without checking for buffer room or status

UART_ReadTxStatus() Reads the status register for the TX portion of the UART

UART_PutChar() Puts a byte of data into the transmit buffer to be sent when the bus is available

UART_PutString() Places data from a string into the memory buffer for transmitting

UART_PutArray() Places data from a memory array into the memory buffer for transmitting

UART_PutCRLF() Writes a byte of data followed by a Carriage Return and Line Feed to the
transmit buffer

UART_GetTxBufferSize() Returns the number of bytes in the TX buffer which are waiting to be transmitted.

UART_ClearTxBuffer() Clears all data from the TX buffer

UART_SendBreak() Transmits a break signal on the bus

UART_SetTxAddressMode() Configures the transmitter to signal the next bytes as address or data

UART_LoadRxConfig() Loads the receiver configuration. Half Duplex UART is ready for receive byte

UART_LoadTxConfig() Loads the transmitter configuration. Half Duplex UART is ready for transmit byte

UART_Sleep() Stops the UART operation and saves the user configuration

UART_Wakeup() Restores and enables the user configuration

UART_Init() Initializes default configuration provided with customizer

UART_Enable() Enables the UART block operation

UART_SaveConfig() Save the current user configuration

UART_RestoreConfig() Restores the user configuration

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 13 of 56

void UART_Start(void)

Description: This is the preferred method to begin Component operation. UART_Start() sets the initVar
variable, calls the UART_Init() function, and then calls the UART_Enable() function.

Side Effects: If the initVar variable is already set, this function only calls the UART_Enable() function.

void UART_Stop(void)

Description: Disables the UART operation.

uint8 UART_ReadControlRegister(void)

Description: Returns the current value of the control register.

Return Value: uint8: Contents of the control register The following defines can be used to interpret the
returned value.

See the Control registers description near the end of this datasheet for more information.

Value Description

UART_CTRL_HD_SEND Configures whether the half duplex UART (if enabled) is in RX
mode (0), or in TX mode (1).

UART_CTRL_HD_SEND_BREAK Set to send a break signal on the bus. This bit is written by the
UART_SendBreak function.

UART_CTRL_MARK Configures whether the parity bit during the next transaction (in
Mark/Space parity mode) will be a 1 or 0.

UART_CTRL_PARITY_TYPE_MASK Two bits wide field configuring the parity for the next transfer if
software configurable. The following defines, shifted left by
UART_CTRL_PARITY_TYPE0_SHIFT, can be used to recognize
the parity type:

▪ UART__B_UART__NONE_REVB – No parity

▪ UART__B_UART__EVEN_REVB – Even parity

▪ UART__B_UART__ODD_REVB – Odd parity

▪ UART__B_UART__MARK_SPACE_REVB – Mark/Space
parity

UART_CTRL_RXADDR_MODE_MASK Three bits wide field configuring the expected hardware addressing
operation for the UART receiver. The following defines, shifted left
by UART_CTRL_RXADDR_MODE0_SHIFT, can be used to
recognize the address mode:

▪ UART__B_UART__AM_SW_BYTE_BYTE
Software Byte-by-Byte address detection

▪ UART__B_UART__AM_SW_DETECT_TO_BUFFER
Software Detect to Buffer address detection

▪ UART__B_UART__AM_HW_BYTE_BY_BYTE
Hardware Byte-by-Byte address detection

▪ UART__B_UART__AM_HW_DETECT_TO_BUFFER
Hardware Detect to Buffer address detection

▪ UART__B_UART__AM_NONE
No address detection

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 14 of 56 Document Number: 001-97157 Rev. *D

void UART_WriteControlRegister(uint8 control)

Description: Writes an 8-bit value into the control register.

Note that to change control register it must be read first using UART_ReadControlRegister
function, modified and then written.

Parameters: uint8 control: Control register value.

See the Control registers description near the end of this datasheet for more information.

Value Description

UART_CTRL_HD_SEND Configures whether the half duplex UART (if enabled) is
in RX mode (0), or in TX mode (1).

UART_CTRL_HD_SEND_BREAK Set to send a break signal on the bus. This bit is written
by the UART_SendBreak function.

UART_CTRL_MARK Configures whether the parity bit during the next
transaction (in Mark/Space parity mode) will be a 1 or 0.

UART_CTRL_PARITY_TYPE_MASK Two bits wide field configuring the parity for the next
transfer if software configurable. The following defines,
shifted left by UART_CTRL_PARITY_TYPE0_SHIFT,
can be used to recognize the parity type:

▪ UART__B_UART__NONE_REVB – No parity

▪ UART__B_UART__EVEN_REVB – Even parity

▪ UART__B_UART__ODD_REVB – Odd parity

▪ UART__B_UART__MARK_SPACE_REVB –
Mark/Space parity

UART_CTRL_RXADDR_MODE_MASK Three bits wide field configuring the expected hardware
addressing operation for the UART receiver. The
following defines, shifted left by
UART_CTRL_RXADDR_MODE0_SHIFT, can be used to
recognize the address mode:

▪ UART__B_UART__AM_SW_BYTE_BYTE
Software Byte-by-Byte address detection

▪ UART__B_UART__AM_SW_DETECT_TO_BUFFER
Software Detect to Buffer address detection

▪ UART__B_UART__AM_HW_BYTE_BY_BYTE Hardware
Byte-by-Byte address detection

▪ UART__B_UART__AM_HW_DETECT_TO_BUFFERHard
ware Detect to Buffer address detection

▪ UART__B_UART__AM_NONE
No address detection

void UART_EnableRxInt(void)

Description: Enables the internal receiver interrupt.

Side Effects: Only available if the RX internal interrupt implementation is selected in the UART

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 15 of 56

void UART_DisableRxInt(void)

Description: Disables the internal receiver interrupt.

Side Effects: Only available if the RX internal interrupt implementation is selected in the UART

void UART_SetRxInterruptMode(uint8 intSrc)

Description: Configures the RX interrupt sources enabled.

Parameters: uint8 intSrc: Bit field containing the RX interrupts to enable. Based on the bit-field
arrangement of the status register. This value must be a combination of status register bit-
masks shown below:

Value Description

UART_RX_STS_FIFO_NOTEMPTY Interrupt on byte received.

UART_RX_STS_PAR_ERROR Interrupt on parity error.

UART_RX_STS_STOP_ERROR Interrupt on stop error.

UART_RX_STS_BREAK Interrupt on break.

UART_RX_STS_OVERRUN Interrupt on overrun error.

UART_RX_STS_ADDR_MATCH Interrupt on address match.

UART_RX_STS_MRKSPC Interrupt on address detect.

uint8 UART_ReadRxData(void)

Description: Returns the next byte of received data. This function returns data without checking the
status. You must check the status separately.

Return Value: uint8: Received data from RX register

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 16 of 56 Document Number: 001-97157 Rev. *D

uint8 UART_ReadRxStatus(void)

Description: Returns the current state of the receiver status register and the software buffer overflow
status.

Return Value: uint8: Current RX status register value

Value Description

UART_RX_STS_FIFO_NOTEMPTY If set, indicates the FIFO has data available.

UART_RX_STS_PAR_ERROR If set, indicates a parity error was detected.

UART_RX_STS_STOP_ERROR If set, indicates a framing error was detected. The
framing error is caused when the UART hardware
sees the logic 0 where the stop bit should be (logic 1).

UART_RX_STS_BREAK If set, indicates a break was detected.

UART_RX_STS_OVERRUN If set, indicates the FIFO buffer was overrun.

UART_RX_STS_ADDR_MATCH Indicates that the received byte matches one of the
two addresses available for hardware address
detection. It is not implemented if Address Mode is
set to None. In Half Duplex mode, only Address #1

is implemented for this detection.

UART_RX_STS_MRKSPC Status of the mark/space parity bit. This bit indicates
whether a mark or space was seen in the parity bit
location of the transfer. It is not implemented if
Address Mode is set to None.

UART_RX_STS_SOFT_BUFF_OVER If set, indicates the RX buffer was overrun.

Side Effects: All status register bits are clear-on-read except UART_RX_STS_FIFO_NOTEMPTY.

UART_RX_STS_FIFO_NOTEMPTY clears immediately after RX data register read.

See the Registers section later in this datasheet.

uint8 UART_GetChar(void)

Description: Returns the last received byte of data. UART_GetChar() is designed for ASCII characters
and returns a uint8 where 1 to 255 are values for valid characters and 0 indicates an error
occurred or no data is present.

Return Value: uint8: Character read from UART RX buffer. ASCII character values from 1 to 255 are valid.
A returned zero signifies an error condition or no data available.

uint16 UART_GetByte(void)

Description: Reads UART RX buffer immediately, returns received character and error condition.

Return Value: uint16: MSB contains status and LSB contains UART RX data. If the MSB is nonzero, an
error has occurred.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 17 of 56

uint8/uint16 UART_GetRxBufferSize(void)

Description: Returns the number of received bytes available in the RX buffer.

▪ RX software buffer is disabled (RX Buffer Size parameter is equal to 4): returns 0 for
empty RX FIFO or 1 for not empty RX FIFO.

▪ RX software buffer is enabled: returns the number of bytes available in the RX software
buffer. Bytes available in the RX FIFO do not take to account.

Return Value: uint8/uint16: Number of bytes in the RX buffer. Return value type depends on RX Buffer
Size parameter.

void UART_ClearRxBuffer(void)

Description: Clears the receiver memory buffer and hardware RX FIFO of all received data.

void UART_SetRxAddressMode(uint8 addressMode)

Description: Sets the software controlled Addressing mode used by the RX portion of the UART.

Parameters: uint8 addressMode: Enumerated value indicating the mode of RX addressing to implement

Value Description

UART__B_UART__AM_SW_BYTE_BYTE Software Byte-by-Byte address
detection

UART__B_UART__AM_SW_DETECT_TO_BUFFER Software Detect to Buffer address
detection

UART__B_UART__AM_HW_BYTE_BY_BYTE Hardware Byte-by-Byte address
detection

UART__B_UART__AM_HW_DETECT_TO_BUFFER Hardware Detect to Buffer address
detection

UART__B_UART__AM_NONE No address detection

void UART_SetRxAddress1(uint8 address)

Description: Sets the first of two hardware-detectable receiver addresses.

Parameters: uint8 address: Address #1 for hardware address detection

void UART_SetRxAddress2(uint8 address)

Description: Sets the second of two hardware-detectable receiver addresses.

Parameters: uint8 address: Address #2 for hardware address detection

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 18 of 56 Document Number: 001-97157 Rev. *D

void UART_EnableTxInt(void)

Description: Enables the internal transmitter interrupt.

Side Effects: Only available if the TX internal interrupt implementation is selected in the UART
configuration.

void UART_DisableTxInt(void)

Description: Disables the internal transmitter interrupt.

Side Effects: Only available if the TX internal interrupt implementation is selected in the UART
configuration.

void UART_SetTxInterruptMode(uint8 intSrc)

Description: Configures the TX interrupt sources to be enabled (but does not enable the interrupt).

Parameters: uint8 intSrc: Bit field containing the TX interrupt sources to enable

Value Description

UART_TX_STS_COMPLETE Interrupt on TX byte complete

UART_TX_STS_FIFO_EMPTY Interrupt when TX FIFO is empty

UART_TX_STS_FIFO_FULL Interrupt when TX FIFO is full

UART_TX_STS_FIFO_NOT_FULL Interrupt when TX FIFO is not full

void UART_WriteTxData(uint8 txDataByte)

Description: Places a byte of data into the transmit buffer to be sent when the bus is available without
checking the TX status register. You must check status separately.

Parameters: uint8 txDataByte: data byte

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 19 of 56

uint8 UART_ReadTxStatus(void)

Description: Reads the status register for the TX portion of the UART.

Return Value: uint8: Contents of the TX Status register

Value Description

UART_TX_STS_COMPLETE If set, indicates byte was transmitted successfully

UART_TX_STS_FIFO_EMPTY If set, indicates the TX FIFO is empty

UART_TX_STS_FIFO_FULL If set, indicates the TX FIFO is full

UART_TX_STS_FIFO_NOT_FULL If set, indicates the FIFO is not full

Side Effects: This function reads the TX status register, which is cleared on read.

void UART_PutChar(uint8 txDataByte)

Description: Puts a byte of data into the transmit buffer to be sent when the bus is available. This is a
blocking API that waits until the TX buffer has room to hold the data.

Parameters: uint8 txDataByte: Byte containing the data to transmit

void UART_PutString(const char8 string[])

Description: Sends a NULL terminated string to the TX buffer for transmission.

Parameters: const char8 string[]: Pointer to the null terminated string array residing in RAM or ROM

Side Effects: If there is not enough memory in the TX buffer for the entire string, this function blocks until
the last character of the string is loaded into the TX buffer.

void UART_PutArray(const uint8 string[], uint8/uint16 byteCount)

Description: Places N bytes of data from a memory array into the TX buffer for transmission.

Parameters: const uint8 string[]: Address of the memory array residing in RAM or ROM

uint8/uint16 byteCount: Number of bytes to be transmitted. The type depends on TX Buffer
Size parameter.

Side Effects: If there is not enough memory in the TX buffer for the entire array, this function blocks until
the last byte of the array is loaded into the TX buffer.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 20 of 56 Document Number: 001-97157 Rev. *D

void UART_PutCRLF(uint8 txDataByte)

Description: Writes a byte of data followed by a carriage return (0x0D) and line feed (0x0A) to the transmit
buffer.

Parameters: uint8 txDataByte: Data byte to transmit before the carriage return and line feed

Side Effects: If there is not enough memory in the TX buffer for all three bytes, this function blocks until the
last of the three bytes are loaded into the TX buffer.

uint8/uint16 UART_GetTxBufferSize(void)

Description: Returns the number of bytes in the TX buffer which are waiting to be transmitted.

▪ TX software buffer is disabled (TX Buffer Size parameter is equal to 4): returns 0 for

empty TX FIFO, 1 for not full TX FIFO or 4 for full TX FIFO.

▪ TX software buffer is enabled: returns the number of bytes in the TX software buffer
which are waiting to be transmitted. Bytes available in the TX FIFO do not take to
account.

Return Value: uint8/uint16: Number of bytes in the TX buffer. Return value type depends on the TX Buffer
Size parameter.

void UART_ClearTxBuffer(void)

Description: Clears all data from the TX buffer and hardware TX FIFO.

Side Effects: Data waiting in the transmit buffer is not sent; a byte that is currently transmitting finishes
transmitting.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 21 of 56

void UART_SendBreak(uint8 retMode)

Description: Transmits a break signal on the bus.

Note The break signal length is defined by the UART bit time; the maximum value is 14 bits.
This can limit the break length for some UART variants. In these cases, the GPIO functionality
can be used for logner break length generation.

Parameters: uint8 retMode: Send Break return mode. See the following table for options.

Options Description

UART_SEND_BREAK Initialize registers for break, send the Break signal
and return immediately

UART_WAIT_FOR_COMPLETE_REINIT Wait until break transmission is complete, reinitialize
registers to normal transmission mode then return

UART_REINIT Reinitialize registers to normal transmission mode
then return

UART_SEND_WAIT_REINIT Performs both options: UART_SEND_BREAK and
UART_WAIT_FOR_COMPLETE_REINIT. This
option is recommended for most cases

Side Effects: The UART_SendBreak() function initializes registers to send a break signal. Break signal
length depends on the break signal bits configuration. The register configuration should be
reinitialized before normal 8-bit communication can continue.

void UART_SetTxAddressMode(uint8 addressMode)

Description: Configures the transmitter to signal the next bytes is address or data.

Parameters: uint8 addressMode:

Options Description

UART_SET_SPACE Configure the transmitter to send the next byte as a data.

UART_SET_MARK Configure the transmitter to send the next byte as an address.

Side Effects: This function sets and clears UART_CTRL_MARK bit in the Control register.

void UART_LoadRxConfig(void)

Description: Loads the receiver configuration in half duplex mode. After calling this function, the UART is
ready to receive data.

Side Effects: Valid only in half duplex mode. You must make sure that the previous transaction is complete
and it is safe to unload the transmitter configuration.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 22 of 56 Document Number: 001-97157 Rev. *D

void UART_LoadTxConfig(void)

Description: Loads the transmitter configuration in half duplex mode. After calling this function, the UART
is ready to transmit data.

Side Effects: Valid only in half duplex mode. You must make sure that the previous transaction is complete
and it is safe to unload the receiver configuration.

void UART_Sleep(void)

Description: This is the preferred API to prepare the Component for sleep. The UART_Sleep() API saves
the current Component state. Then it calls the UART_Stop() function and calls
UART_SaveConfig() to save the hardware configuration.

Call the UART_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power management functions.

void UART_Wakeup(void)

Description: This is the preferred API to restore the Component to the state when UART_Sleep() was
called. The UART_Wakeup() function calls the UART_RestoreConfig() function to restore the
configuration. If the Component was enabled before the UART_Sleep() function was called,
the UART_Wakeup() function will also re-enable the Component.

Side Effects: This function clears the RX and TX software buffers and hardware FIFOs and will not reset
any hardware state machines. Calling the UART_Wakeup() function without first calling the
UART_Sleep() or UART_SaveConfig() function may produce unexpected behavior.

void UART_Init(void)

Description: Initializes or restores the Component according to the customizer Configure dialog settings.
It is not necessary to call UART_Init() because the UART_Start() API calls this function and
is the preferred method to begin Component operation.

Side Effects: All registers will be set to values according to the customizer Configure dialog.

void UART_Enable(void)

Description: Activates the hardware and begins Component operation. It is not necessary to call
UART_Enable() because the UART_Start() API calls this function, which is the preferred
method to begin Component operation.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 23 of 56

void UART_SaveConfig(void)

Description: This function saves the Component configuration and nonretention registers. It also saves
the current Component parameter values, as defined in the Configure dialog or as modified
by appropriate APIs. This function is called by the UART_Sleep() function.

Side Effects: All nonretention registers except FIFO are saved to RAM.

void UART_RestoreConfig(void)

Description: Restores the user configuration of nonretention registers.

Side Effects: All nonretention registers except FIFO loaded from RAM. This function should be called only
after UART_SaveConfig() is called, otherwise incorrect data will be loaded into the registers.

Global Variables

Variable Description

UART_initVar Indicates whether the UART has been initialized. The variable is initialized to 0 and
set to 1 the first time UART_Start() is called. This allows the Component to restart
without reinitialization after the first call to the UART_Start() routine.

For correct operation of the Component, the UART must be initialized before Send
or Put commands are run. Therefore, all APIs that write transmit data must check
that the Component has been initialized using this variable.

If reinitialization of the Component is required, then the UART_Init() function can be
called before the UART_Start() or UART_Enable() function.

UART_rxBuffer This is a RAM-allocated RX buffer with a user-defined length. This buffer is used by
interrupts, when the RX Buffer Size parameter is set to more than 4, to store
received data. It is also used by UART_ReadRxData() and UART_GetChar() to
convey data to the user-level firmware.

UART_rxBufferWrite This variable is used by the RX interrupt as a cyclic index for UART_rxBuffer to
write data. This variable is also used by the UART_ReadRxData() and
UART_GetChar() functions to identify new data. Cleared to zero by the
UART_ClearRxBuffer() function.

UART_rxBufferRead This variable is used by the UART_ReadRxData() and UART_GetChar() functions
as a cyclic index for UART_rxBuffer to read data. Cleared to zero by the
UART_ClearRxBuffer() function.

UART_rxBufferLoopDetect This variable is set to one in RX interrupt when the UART_rxBufferWrite index
overtakes the UART_rxBufferRead index. This is a preoverload condition that
affects UART_rxBufferOverflow when the next byte is received. It is set to zero
when the UART_ReadRxData() or UART_GetChar() function is called. Cleared to
zero by the UART_ClearRxBuffer() function.

UART_rxBufferOverflow This variable is used to indicate overload condition. It set to one in RX interrupt
when there isn’t free space in UART_rxBuffer to write new data. This condition is
returned and cleared to zero by the UART_ReadRxStatus() function as an
UART_RX_STS_SOFT_BUFF_OVER bit along with RX Status register bits.
Cleared to zero by the UART_ClearRxBuffer() function.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 24 of 56 Document Number: 001-97157 Rev. *D

Variable Description

UART_txBuffer This is a RAM-allocated TX buffer of user-defined length. This buffer is used by
sending APIs when the TX Buffer Size parameter is set to more than 4, to store
data for transmitting. It is also used by the TX interrupt to move data into the
hardware FIFO.

UART_txBufferWrite This variable is used by the UART_WriteTxData(), UART_PutChar(),
UART_PutString(), UART_PutArray(), and UART_PutCRLF() functions as a cyclic
index for UART_txBuffer to write data. This variable is also used by the TX interrupt
to identify new data for transmitting. Cleared to zero by the UART_ClearTxBuffer()
function.

UART_txBufferRead This variable is used by the TX interrupt as a cyclic index for the UART_txBuffer to
read data. Cleared to zero by the UART_ClearRxBuffer() function.

Defines

The following defines are provided only for reference. The define values are determined by the
Component customizer settings.

Define Description

UART_INIT_RX_INTERRUPTS_MASK Defines the initial configuration of the interrupt sources that you chose in
the configuration GUI. This is a mask of the bits in the status register
that have been enabled at configuration as sources for the RX interrupt.

UART_INIT_TX_INTERRUPTS_MASK Defines the initial configuration of the interrupt sources that you chose in
the configuration GUI. This is a mask of the bits in the status register
that have been enabled at configuration as sources for the TX interrupt.

UART_TX_BUFFER_SIZE Defines the amount of memory to allocate for the TX memory array
buffer. This does not include the four bytes included in the FIFO.

UART_RX_BUFFER_SIZE Defines the amount of memory to allocate for the RX memory array
buffer. This does not include the four bytes included in the FIFO.

UART_NUMBER_OF_DATA_BITS Defines the number of bits per data transfer, which is used to calculate
the Bit-Clock Generator and Bit Counter configuration registers.

UART_BIT_CENTER Based on the number of data bits, this value is used to calculate the
center point for the RX Bit-Clock Generator which is loaded into the
configuration register at startup of the UART.

UART_RX_HW_ADDRESS1 Defines the initial address selected in the configuration GUI. This
address is loaded into the corresponding hardware register at startup of
the UART.

UART_RX_HW_ADDRESS2 Defines the initial address selected in the configuration GUI. This
address is loaded into the corresponding hardware register at startup of
the UART.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 25 of 56

Bootloader Support

The UART Component can be used as a communication Component for the Bootloader. Use the
following configuration to support communication protocol from an external system to the
Bootloader:

▪ Mode: Full UART (TX + RX)

▪ Bits per second: Must match Host (boot device) data rate.

▪ Data bits: 8

▪ Parity Type, Stop bits, Flow Control: Must match Host (boot device) configuration.

▪ RX Buffer Size (bytes): 64

▪ TX Buffer Size (bytes): 64

For more information about the Bootloader, refer to the Bootloader/Bootloadable Component
Datasheet.

The UART Component provides a set of API functions for Bootloader use.

Function Description

UART_CyBtldrCommStart() Starts the UART Component and enables its interrupt.

UART_CyBtldrCommStop() Disables the UART Component and disables its interrupt.

UART_CyBtldrCommReset() Resets the receive and transmit communication buffers.

UART_CyBtldrCommRead() Allows the caller to read data from the bootloader host. This function manages
polling to allow a block of data to be completely received from the host device.

UART_CyBtldrCommWrite() Allows the caller to write data to the boot loader host. This function uses a
blocking write function for writing data using UART communication Component.

void UART_CyBtldrCommStart(void)

Description: Starts the UART communication Component.

Side Effects: This Component automatically enables global interrupt.

void UART_CyBtldrCommStop(void)

Description: This function disables the UART Component and disables its interrupt.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 26 of 56 Document Number: 001-97157 Rev. *D

void UART_CyBtldrCommReset(void)

Description: Resets the receive and transmit communication Buffers.

cystatus UART_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)

Description: This function allows the caller to read data from the bootloader host. The function manages
polling to allow a block of data to be completely received from the bootloader host.

Parameters: uint8 pData[]: Pointer to storage for the block of data to be read from the bootloader host

uint16 size: Number of bytes to be read

uint16 *count: Pointer to the variable to write the number of bytes actually read

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information, see the “Return Codes” section of
the System Reference Guide.

cystatus UART_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)

Description: Allows the caller to write data to the boot loader host. This function uses a blocking write
function for writing data using UART communication Component.

Parameters: const uint8 pData[]: Pointer to the block of data to be written to the bootloader host

uint16 size: Number of bytes to be written

uint16 *count: Pointer to the variable to write the number of bytes actually written

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information see the “Return Codes” section of
the System Reference Guide.

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated
by PSoC Creator. Refer to the PSoC Creator Help and Component Author Guide for more
details.

In order to add code to the macro callback present in the Component’s generated source files,
perform the following:

▪ Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will
“uncomment” the function call from the Component’s source code.

▪ Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 27 of 56

▪ Write the function implementation (in any user file).

Callback Function [1] Associated Macro Description

UART_RXISR_EntryCallback UART_RXISR_ENTRY_CALLBACK Used at the beginning of the
_RXISR() interrupt handler to
perform additional application-
specific actions.

UART_RXISR_ExitCallback UART_RXISR_EXIT_CALLBACK Used at the end of the _RXISR()
interrupt handler to perform
additional application-specific
actions.

UART_TXISR_EntryCallback UART_TXISR_ENTRY_CALLBACK Used at the beginning of the
_TXISR() interrupt handler to
perform additional application-
specific actions.

UART_TXISR_ExitCallback UART_TXISR_EXIT_CALLBACK Used at the end of the _TXISR()
interrupt handler to perform
additional application-specific
actions.

UART_RXISR_ERROR_Callback UART_RXISR_ERROR_CALLBACK Used in the _RXISR() interrupt
handler to perform additional
application-specific actions.

UART_RXISR_ERROR_Callback UART_RXISR_ERROR_CALLBACK Used in the _RXISR() interrupt
handler to perform additional
application-specific actions.

Sample Firmware Source Code

PSoC Creator provides many code example projects that include schematics and example code
in the Find Code Example dialog. For Component-specific examples, open the dialog from the
Component Catalog or an instance of the Component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Code Example” topic in the PSoC Creator Help for more information.

1 The callback function name is formed by Component function name optionally appended by short explanation
and “Callback” suffix.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 28 of 56 Document Number: 001-97157 Rev. *D

Source Code Example for ISR routine

uint8 rec_status = 0u;

uint8 rec_data = 0;

static uint8 pointerRX = 0u;

static uint8 address_detected = 0u;

rec_status = UART_RX_RXSTATUS_REG;

if(rec_status & UART_RX_RX_STS_FIFO_NOTEMPTY)

{

 rec_data = UART_RX_RXDATA_REG;

 if(rec_status & UART_RX_RX_STS_MRKSPC)

 {

 if (rec_data == UART_RX_RXHWADDRESS1) /* Use any other address */

 {

 address_detected = 1;

 }

 else

 {

 address_detected = 0;

 }

 }

 else

 {

 if(address_detected)

 {

 if(pointerRX >= STR_LEN_MAX)

 {

 pointerRX = 0u;

 }

 /* Detect end of packet */

 if(rec_data == '\r')

 { /* write null terminated string */

 rx_buffer[pointerRX++] = 0u;

 pointerRX = 0u;

 paket_receivedRX = 1u;

 }

 else

 {

 rx_buffer[pointerRX++] = rec_data;

 }

 }

 }

}

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 29 of 56

Printf() function Usage Model

The printf() function formats a series of strings and numeric values and builds a string to write to
the output stream. It has different implementation in different compilers. Keil compiler use the
putchar(), GCC use _write(), MDK and RVDS use fputc() while IAR use __write() function to
send the data. Application should revise these functions and call the communication Component
API to send data via selected interface.

Example:

#include <project.h>

#include <stdio.h>

#if (CY_PSOC3)

 /* For Keil compiler revise putchar() function with communication

 Component which has to send data */

 char putchar(char c)

 {

 UART_PutChar(c);

 return c;

 }

#else

 #if defined(__ARMCC_VERSION)

 /* For MDK/RVDS compiler revise fputc function */

 struct __FILE

 {

 int handle;

 };

 enum

 {

 STDIN_HANDLE,

 STDOUT_HANDLE,

 STDERR_HANDLE

 };

 FILE __stdin = {STDIN_HANDLE};

 FILE __stdout = {STDOUT_HANDLE};

 FILE __stderr = {STDERR_HANDLE};

 int fputc(int ch, FILE *file)

 {

 int ret = EOF;

 switch(file->handle)

 {

 case STDOUT_HANDLE:

 UART_PutChar(ch);

 ret = ch;

 break;

 case STDERR_HANDLE:

 ret = ch;

 break;

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 30 of 56 Document Number: 001-97157 Rev. *D

 default:

 file = file;

 break;

 }

 return(ret);

 }

#elif defined (__ICCARM__) /* IAR */

/* For IAR compiler revise __write() function for printf functionality */

size_t __write(int handle, const unsigned char * buffer, size_t size)

{

 size_t nChars = 0;

 for (/* Empty */; size != 0; --size)

 {

 UART_PutChar(*buffer++);

 ++nChars;

 }

 return (nChars);

}

#else /* (__GNUC__) GCC */

 /* For GCC compiler revise _write() function */

 int _write(int file, char *ptr, int len)

 {

 int i;

 for (i = 0; i < len; i++)

 {

 UART_PutChar(*ptr++);

 }

 return(len);

 }

 #endif /* (__ARMCC_VERSION) */

#endif /* CY_PSOC3 */

/* Add an explicit reference to the floating point printf library to allow

 the usage of floating point conversion specifier */

#if defined (__GNUC__)

 asm (".global _printf_float");

#endif

void main()

{

 uint32 i = 444444444;

 float f = 55.555f;

 CyGlobalIntEnable; /* Enable interrupts */

 UART_Start(); /* Start communication Component */

 /* Use printf() function which will send formatted data through "UART" */

 printf("Test printf function. long:%ld,float:%f \n",i,f);

}

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 31 of 56

The log from terminal software:

Test printf function. long:444444444,float:55.555

Note The printf() function prepares the text stream in the buffer and executes it when it receives
new-line character ‘\n’.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are two types of deviations defined:

▪ project deviations – deviations that are applicable for all PSoC Creator Components

▪ specific deviations – deviations that are applicable only for this Component

This section provides information on Component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The UART Component has the following specific deviations:

MISRA-
C:2004

Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

10.5 R If the bitwise operators ~ and << are
applied to an operand of underlying type
unsigned char or unsigned short, the
result shall be immediately cast to the
underlying type of the operand.

The return value is in not cast to uint16
after applying << operation in GetByte()
function. There is no side effect in this
particular case.

This Component has the following embedded Components: Interrupt, Clock. Refer to the
corresponding Component datasheet for information on their MISRA compliance and specific
deviations.

API Memory Usage

The Component memory usage varies significantly, depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.

The measurements have been done with associated compiler configured in Release mode with
optimization set for Size. For a specific design the map file generated by the compiler can be
analyzed to determine the memory usage.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 32 of 56 Document Number: 001-97157 Rev. *D

Configuration

PSoC 3 (Keil_PK51) PSoC 4 (GCC) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Full UART 1633 23 N/A[2] N/A 1860 23

Simple UART 605 3 822 3 814 3

Half Duplex 645 3 918 3 918 3

RX Only 288 2 432 2 444 2

TX Only 463 3 584 3 596 3

Functional Description

Block Diagram

The UART is implemented in the UDB blocks as shown in the following diagram.

System Bus

Transmit Shift Register tx

TX Status Register tx_interrupt

Write by CPU or DMA

Control Register

Receive Shift Register

Read by CPU or DMA

TX State MachineRX State Machine

reset

rx

RX Status Register

rx_interrupt

8x or 16x oversamplingclock

RX TX

cts_n

rts_n

tx_en

RX Data Register TX Data Register
4x FIFO 4x FIFO

The UART Component provides synchronous communication commonly referred to as RS232 or
RS485. The UART can be configured for full duplex, half duplex, RX only, or TX only operation.
The following sections give an overview of how to use the UART Component.

2. The maximum UART configuration doesn’t fit in to PSoC 4 device because of maximum number or UDB
macrocells exceeded (max=32, need=59).

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 33 of 56

Default Configuration

The default configuration for the UART is as an 8-bit UART with no flow control and no parity,
running at a baud rate of 57.6 Kbps.

UART Mode: Full UART (RX+TX)

This mode implements a full-duplex UART consisting of an asynchronous Receiver and
Transmitter. A single clock is needed in this mode to define the baud rate for both the receiver
and transmitter.

UART Mode: Half Duplex

The UART implementation in Half Duplex mode is shown in the following block diagram.

System Bus

tx

Write by CPU or DMA

Control Register

Read by CPU or DMA

 State Machine

reset

rx

RX Status Register rx_interrupt

clock

cts_n

rts_n

tx_en

HD

8x or 16x oversampling

Shift Register

RX Data Register TX Data Register
4x FIFO 4x FIFO

This mode implements a full UART, but uses half as many resources as the full UART
configuration. In this configuration, the UART can be configured to switch between RX mode and
TX mode, but cannot perform RX and TX operations simultaneously. The RX or TX configuration
can be loaded by calling the UART_LoadRxConfig() or UART_LoadTxConfig() function.

In this mode, the TX – On FIFO Not Full status is not available, but the TX – On FIFO Full
status can be used instead. Because TX interrupts are not available in this mode, the TX buffer
size is limited to four bytes.

In Half Duplex mode, the Address2 parameter does not work for hardware address match status
(UART_RX_STS_ADDR_MATCH), but it can still be used by software.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 34 of 56 Document Number: 001-97157 Rev. *D

Half Duplex mode example:

▪ This example assumes the Component has been placed in a design with the name
UART_1.

▪ Configure UART to Mode: Half Duplex, Bits per second: 115200, Data bits: 8, Parity
Type: None, Rx Buffer Size: 4, Tx Buffer Size: 4.

#include <project.h>

void main()

{

 uint8 recByte;

 uint8 tmpStat;

 CyGlobalIntEnable; /* Enable interrupts */

 UART_1_Start(); /* Start UART */

 UART_1_LoadTxConfig(); /* Configure UART for transmitting */

 UART_1_PutString("Half Duplex Test"); /* Send message */

 /* make sure that data has been transmitted */

 CyDelay(30); /* Appropriate delay could be used */

 /* Alternatively, check TX_STS_COMPLETE status bit */

 UART_1_LoadRxConfig(); /* Configure UART for receiving */

 while(1)

 {

 recByte = UART_1_GetChar(); /* Check for receive byte */

 if(recByte > 0) /* If byte received */

 {

 UART_1_LoadTxConfig(); /* Configure UART for transmitting */

 UART_1_PutChar(recByte); /* Send received byte back */

 do /* wait until transmission complete */

 { /* Read Status register */

 tmpStat = UART_1_ReadTxStatus();

 /* Check the TX_STS_COMPLETE status bit */

 }while(~tmpStat & UART_1_TX_STS_COMPLETE);

 UART_1_LoadRxConfig(); /* Configure UART for receiving */

 }

 }

}

UART Mode: RX Only

This mode implements only the receiver portion of the UART. A single clock is needed in this
mode to define the baud rate for the receiver.

UART Mode: TX Only

This mode implements only the transmitter portion of the UART. A single clock is needed in this
mode to define the baud rate for the transmitter.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 35 of 56

UART Flow Control: None, Hardware

Flow control on the UART provides separate RX and TX status indication lines to the existing
bus. When hardware flow control is enabled, a ‘Request to Send’ (RTS) line and a ‘Clear to
Send’ (CTS) line are available between this UART and another UART. The CTS line is an input
to the UART that is set by the other UART in the system when it is OK to send data on the bus.
The RTS line is an output of the UART informing the other UART on the bus that it is ready to
receive data. The RTS line of one UART is connected to the CTS line of the other UART and
vice versa. These lines are only valid before a transmission is started. If the signal is set or
cleared after a transfer is started the change will only affect the next transfer.

UART Parity: None

In this mode, there is no parity bit. The data flow is "Start, Data, Stop."

UART Parity: Odd

Odd parity begins with the parity bit equal to 1. Each time a 1 is encountered in the data stream,
the parity bit is toggled. At the end of the data transmission the state of the parity bit is
transmitted. Odd parity ensures that there is always a transition on the UART bus. If all data is
zero then the parity bit sent will equal 1. The data flow is "Start, Data, Parity, Stop." Odd parity is
the most common parity type used.

UART Parity: Even

Even parity begins with the parity bit equal to 0. Each time a 1 is encountered in the data stream,
the parity bit is toggled. At the end of the data transmission the state of the parity bit is
transmitted. The data flow is "Start, Data, Parity, Stop."

UART Parity: Mark/Space, Data bits: 9

Mark/Space parity is most typically used to define whether the data sent was an address or
standard data. A mark (1) in the parity bit indicates data was sent and a space (0) in the parity bit
indicates an address was sent. The mark or space is sent in the parity bit position in the data
transmission. The data flow is "Start, Data, Parity, Stop," similar to the other parity modes, but
this bit is set by software before the transfer rather than being calculated based on the data bit
values. This parity is available for RS485 and similar protocols.

TX Usage Model

Firmware should use the UART_SetTxAddressMode API with the UART_SET_MARK parameter
to configure the transmitter for the first address byte in the packet. This API sets the
UART_CTRL_MARK bit in the control register. After setting the MARK parity, the first byte sent
is an address and the remaining bytes are sent as data with SPACE parity. The transmitter
automatically sends data bytes after the first address byte. Before sending another packet, the
UART_CTRL_MARK bit in control register should be cleared for at least for one clock. This can

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 36 of 56 Document Number: 001-97157 Rev. *D

be done by calling the UART_SetTxAddressMode API with the UART_SET_SPACE parameter.
This is shown in the code example below.

Send addressed packet example:

▪ This example assumes the Component has been placed in a design with the name
UART_TX.

▪ Configure UART to Data bits: 9, Parity Type: Mark/Space.

#include <project.h>

void main()

{

 UART_TX_Start();

 /*Set UART_CTRL_MARK bit in Control register*/

 UART_TX_SetTxAddressMode(UART_TX_SET_MARK);

 /*Send data packet with the address in first byte*/

 /*The address byte is character '1', which is equal to 0x31 in hex format*/

 UART_TX_PutString("1UART TEST\r");

 /*Clear UART_CTRL_MARK bit in Control register*/

 UART_TX_SetTxAddressMode(UART_TX_SET_SPACE);

}

RX Usage Model

There are four different modes for the receiver:

1. Software Byte by Byte

Use this mode when you need custom code.

The UART_RX_STS_MRKSPC bit in the status register indicates that the address or data byte
reached the receiver.

Receive addressed packet example:

▪ This example assumes the Component has been placed in a design with the name
UART_RX.

▪ Configure UART to Data bits: 9, Parity Type: Mark/Space, Interrupts: RX - On Byte
Received, Address Mode: Software Byte by Byte, Address#1: 31.

▪ Connect external ISR to rx_interrupt pin with the name “isr_rx.”

#include <project.h>

#define STR_LEN_MAX 60u

char rx_buffer[STR_LEN_MAX];

uint8 packet_receivedRX = 0u;

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 37 of 56

void main()

{

 CyGlobalIntEnable; /* Enable interrupts */

 isr_rx_Start();

 UART_RX_Start();

 if(packet_receivedRX == 1u)

 {

 /* add analyze here */

 packet_receivedRX = 0u;

 }

}

2. Software Detect to Buffer

All necessary code is implemented in RX ISR in this mode.

▪ Configure UART to Data bits: 9, Parity Type: Mark/Space, RX Buffer Size: 20, Address
Mode: Software Detect to Buffer, Address#1: 31.

Receive addressed packet example:

void main()

{

 uint8 rec_data = 0u;

 CyGlobalIntEnable; /* Enable interrupts */

 UART_RX_Start();

 for(;;)

 {

 rec_data = UART_RX_GetChar();

 if(rec_data > 0u)

 {

 /* add analyze here */

 }

 }

}

3. Hardware Byte By Byte

The hardware filters unaddressed packets. The main code for this mode will look similar to the
previous example.

▪ Configure UART to Data bits: 9, Parity Type: Mark/Space, RX Buffer Size: 20, Address
Mode: Hardware Byte By Byte, Address#1: 31.

4. Hardware Detect to Buffer

This is the preferred mode for a project that doesn’t require an address byte. The hardware filters
the unaddressed packets within an address byte. The main code receives the addressed data
only bytes.

▪ Configure UART to Data bits: 9, Parity Type: Mark/Space, RX Buffer Size: 20, Address
Mode: Hardware Detect to Buffer, Address#1: 31.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 38 of 56 Document Number: 001-97157 Rev. *D

UART Stop Bits: One, Two

The number of stop bits is available as a synchronization mechanism. In slower systems, it is
sometimes necessary for the stop command to occupy two bit times in order to allow the
receiving side to process the data before more data is sent. Sending two bit-widths of the stop
signal, the transmitter allows the receiver extra time to interpret the data byte and parity. The
second stop bit is not checked for a framing error by the receiver. The data flow is the same,
"Start, Data, [Parity], Stop.” The stop bit time can be configured to either one or two bit widths.

2 out of 3 Voting

The 2 out of 3 voting feature enables an error compensation algorithm. This algorithm essentially
oversamples the middle of each bit three times and performs a majority vote to decide whether
the bit is a 0 or a 1. If 2 out of 3 voting is not enabled, the middle of each bit is only sampled
once.

When enabled, this parameter requires additional hardware resources to implement a 3-bit
counter based on the RX input for three oversampling clock cycles. The following diagram shows
the implementation of 8-bit and 16-bit oversampling, with and without 2 out of 3 voting.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 39 of 56

rx_state IDLE

32 1 0 7

CHECK_START

2/3 sample

2/3

sample

range

Start bit

3 2 1 0 76 5 4

GET_DATA

2/3 count

21 0 7 6

sample

2 1 0 7 6 54 3 count

6 5 4

5 4

bit0

w
it
h

 2
 o

u
t
o

f
3

 v
o

ti
n

g

p
e

r
b

it
w

it
h

o
u

t
2

 o
u

t

o
f
3

 v
o

ti
n

g

3

1 2 3

<2 ? 0 : 1
sampled values

rx rx

1 2 3

clock 16x

2/3

sample

range
1 2 3

72/3 count 14150123456 15012345678910111213 14 910111213

1 2 3

2/3 samplew
it
h

 2
 o

u
t
o

f
3

 v
o

ti
n

g
 p

e
r

b
it

a
n

d
 o

v
e

rs
a

m
p

lin
g

 r
a

te
 1

6
x

8

Falling edge

detection

rx

clock 8x

sample rx rx

8x Sample

Range

16x

Sample

Range

Falling edge detection is implemented to recognize the start bit. After this detection, the counter
starts down counting from the half bit length to 0, and the receiver switches to CHECK_START
state. When the counter reaches 0, the RX line is sampled three times. If the RX line is verified
to be low (for example, at least 2 out of 3 bits were 0), the receiver goes to the GET_DATA state.
Otherwise, the receiver will return to the IDLE state. The start bit detection sequence is the same
for 8x or 16x oversampling rates.

Once the receiver has entered the GET_DATA state, the RX input is fed into a counter that is
enabled on counter cycles 3 to 5 (3 cycles). This counter counts the number of 1s seen on the
RX input. If the counter value is 2 or greater, the output of this counter is 1; otherwise, the output
is 0. This value is sampled into the datapath as the RX value on the fifth clock edge. If voting is

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 40 of 56 Document Number: 001-97157 Rev. *D

not enabled, the RX input is simply sampled on the fourth clock edge after the detection of the
start bit, and continues every eighth positive clock edge after that.

When an oversampling rate of 16x is enabled, the voting algorithm occurs on counter cycles 7 to
9 and the output of the counter is sampled by the datapath as the RX value on the ninth cycle. If
voting is not enabled, the RX input is sampled on the eighth clock edge and continues on every
sixteenth clock edge after that.

Registers

The API functions previously described provide support for the common run time functions
required for most applications. The following sections provide brief descriptions of the UART
registers for the advanced user.

RX and TX Status

The status registers (RX and TX have independent status registers) are read-only registers that
contain the various status bits defined for the UART. The value of these registers can be
accessed using the UART_ReadRxStatus() and UART_ReadTxStatus() function calls.

The interrupt output signals (tx_interrupt and rx_interrupt) are generated by ORing the masked
bit fields within each register. The masks can be set using the UART_SetRxInterruptMode() and
UART_SetTxInterruptMode() function calls. Upon receiving an interrupt, the interrupt source can
be retrieved by reading the respective status register with the UART_GetRxInterruptSource()
and UART_GetTxInterruptSource() function calls. The status registers are clear-on-read so the
interrupt source is held until one of the UART_ReadRxStatus() or UART_ReadTxStatus()
functions is called. All operations on the status register must use the following defines for the bit
fields because these bit fields may be moved within the status register at build time.

There are several bit-fields masks defined for the status registers. Any of these bit fields may be
included as an interrupt source. The #defines are available in the generated header file (.h).

The status data is registered at the input clock edge of the UART. Several of these bits are sticky
and are cleared on a read of the status register. They are assigned as clear-on-read for use as
an interrupt output for the UART. All other bits are configured as transparent and represent the
data directly from the inputs of the status register; they are not sticky and therefore are not clear-
on-read.

All bits configured as sticky are indicated with an asterisk (*) in the following defines:

RX Status Register

Define Description

UART_RX_STS_MRKSPC * Status of the mark/space parity bit. This bit indicates whether a mark or
space was seen in the parity bit location of the transfer. It is only
implemented if the address mode is not set to None.

UART_RX_STS_BREAK * Indicates that a break signal was detected in the transfer.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 41 of 56

Define Description

UART_RX_STS_PAR_ERROR * Indicates that a parity error was detected in the transfer.

UART_RX_STS_STOP_ERROR * This bit indicates framing error. The framing error is caused when the
UART hardware sees the logic 0 where the stop bit should be (logic 1).

UART_RX_STS_OVERRUN * Indicates that the receive FIFO buffer has been overrun.

UART_RX_STS_FIFO_NOTEMPTY Indicates whether the Receive FIFO is Not Empty.

UART_RX_STS_ADDR_MATCH * Indicates that the received byte matches one of the two addresses
available for hardware address detection. It is only implemented if the
address mode is not set to None. In Half Duplex mode, only Address #1
is implemented for this detection.

TX Status Register

Define Description

UART_TX_STS_FIFO_FULL Indicates that the transmit FIFO is full. This should not be confused with
the transmit buffer implemented in memory because the status of that
buffer is not indicated in hardware; it must be checked in firmware.

UART_TX_STS_FIFO_NOT_FULL3 Indicates that the transmit FIFO is not full.

UART_TX_STS_FIFO_EMPTY Indicates that the transmit FIFO is empty.

UART_TX_STS_COMPLETE * Indicates that the last byte has been transmitted from FIFO.

Control

The control register allows you to control the general operation of the UART. This register is
written with the UART_WriteControlRegister() function and read with the
UART_ReadControlRegister() function. The control register is not used if simple UART options
are selected in the customizer; for more details, see the Resources section. When you read or
write the control register you must use the bit-field definitions as defined in the header (.h) file.
The #defines for the control register are as follows:

UART_CTRL_HD_SEND

Used to dynamically reconfigure between RX and TX operation in half duplex mode. This bit is
set by the UART_LoadTxConfig() function and cleared by the UART_LoadRxConfig() function.

3 Not available in half-duplex mode.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 42 of 56 Document Number: 001-97157 Rev. *D

UART_CTRL_HD_SEND_BREAK

When set, will send a break signal on the bus. This bit is written by the UART_SendBreak()
function.

UART_CTRL_MARK

Used to control the Mark/Space parity operation of the transmit byte. When set, this bit indicates
that the next byte transmitted on the bus will include a 1 (Mark) in the parity bit location. All
subsequent bytes will contain a 0 (Space) in the parity bit location until this bit is cleared and
reset by firmware.

UART_CTRL_PARITY_TYPE_MASK

The parity type control is a 2-bit-wide field that defines the parity operation for the next transfer.
This bit field is two consecutive bits in the control register. All operations on this bit field must use
the #defines associated with the parity types available. These are:

Value Description

UART__B_UART__NONE_REVB No parity

UART__B_UART__EVEN_REVB Even parity

UART__B_UART__ODD_REVB Odd parity

UART__B_UART__MARK_SPACE_REVB Mark/Space parity

This bit field is configured at initialization with the parity type defined in the Parity Type
configuration parameter and may be modified during run time using the
UART_WriteControlRegister() function call.

UART_CTRL_RXADDR_MODE_MASK

The RX address mode control is a 3-bit field used to define the expected hardware addressing
operation for the UART receiver. This bit field is three consecutive bits in the control register. All
operations on this bit field must use the #defines associated with the compare modes available.
These are:

Value Description

UART__B_UART__AM_SW_BYTE_BYTE Software Byte by Byte address detection

UART__B_UART__AM_SW_DETECT_TO_BUFFER Software Detect to Buffer address detection

UART__B_UART__AM_HW_BYTE_BY_BYTE Hardware Byte by Byte address detection

UART__B_UART__AM_HW_DETECT_TO_BUFFER Hardware Detect to Buffer address detection

UART__B_UART__AM_NONE No address detection

This bit field is configured at initialization with the Address Mode configuration parameter and
can be modified during run time using the UART_WriteControlRegister() function call.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 43 of 56

TX Data (8-bits)

The TX data register contains the data to be transmitted. This is implemented as a FIFO. There
is a software state machine to control data from the transmit memory buffer to handle larger
portions of data to be sent. All functions dealing with the transmission of data must go through
this register in order to place the data onto the bus. If there is data in this register and flow
control indicates that data can be sent, then the data is transmitted on the bus. As soon as this
register (FIFO) is empty, no more data is transmitted on the bus until it is added to the FIFO.
DMA may be set up to fill this FIFO when empty using the TX data register address defined in
the header file.

Value Description

UART_TXDATA_REG TX data register

UART_TXDATA_PTR TX data register address

RX Data

The RX data register contains the received data, implemented as a FIFO. There is a software
state machine to control data movement from this receive FIFO into the memory buffer.
Typically, the RX interrupt indicates that data has been received, at which time the data can be
retrieved with either the CPU or DMA. DMA may be set up to retrieve data from this register
whenever the FIFO is not empty using the RX data register address defined in the header file.

Value Description

UART_RXDATA_REG RX data register

UART_RXDATA_PTR RX data register address

Constants

There are several constants defined for the status and control registers as well as some
enumerated types. Most of these are described earlier for the status and control registers.
However, there are more constants needed in the header file. Each of the register definitions
requires either a pointer into the register data or a register address. Due to multiple endianness`
of the compilers the CY_GET_REGX and CY_SET_REGX macros must be used to access
registers greater than 8 bits in length. These macros require the use of the defines ending in
_PTR for each of the registers.

The control and status register bits must be allowed to be placed and routed by the fitter engine
during build time. Constants are created to define the placement of the bits. For each of the
status and control register bits, there is an associated _SHIFT value that defines the bit’s offset
within the register. These are used in the header file to define the final bit mask as a _MASK
definition (the _MASK extension is only added to bit fields greater than a single bit; all single bit
values drop the _MASK extension).

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 44 of 56 Document Number: 001-97157 Rev. *D

Resources

The UART Component is placed throughout the UDB array. The Component utilizes the
following resources.

Configuration[4]

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

DMA
Channels

Interrupts

Full UART 3 58 3 3 – 2

Simple UART 3 21 3 1 – 0

Half Duplex 1 21 2 2 – 0

RX Only 1 12 2 1 – 0

TX Only 1 10 2 1 – 0

Note Disabling the TxBitClkGenDP parameter in the Expression View of the Advanced tab
switches one Datapath Cell consumption to one Control Cell for the TX portion of the UART in
Full UART and Simple UART configurations. These configurations will consume two Datapath
Cells plus one Control Cell.

Note The UART Component also uses a different number of P-terms in different configurations.
Please refer to build report for the exact number of used resources.

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics

Parameter Description Min Typ[5] Max Units

IDD(Full) Component current consumption (Full UART)

Idle current[6] – 520 – µA/Mbps

Operating current[7] – 850 – µA/Mbps

IDD(Simple) Component current consumption (Simple UART)

4. Refer to Configuration Details section for selected parameters per each mode.

5. Device IO and clock distribution current not included. The values are at 25 °C.

6. Current consumed by Component while it is enabled but not transmitting/receiving data.

7. Current consumed by Component while it is enabled and transmitting/receiving data.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 45 of 56

Parameter Description Min Typ[5] Max Units

Idle current[3] – 130 – µA/Mbps

Operating current[4] – 360 – µA/Mbps

IDD(HalfDuplex) Component current consumption (Half Duplex)

Idle current[3] – 100 – µA/Mbps

Operating current for receive operation[4] – 140 – µA/Mbps

Operating current for transmit operation[4] – 220 – µA/Mbps

IDD(RX) Component current consumption (RX Only)

Idle current[3] – 70 – µA/Mbps

Operating current[4] – 100 – µA/Mbps

IDD(TX) Component current consumption (TX Only)

Idle current[3] – 50 – µA/Mbps

Operating current[4] – 200 – µA/Mbps

AC Characteristics

Parameter Description Min Typ Max[8] Units

fCLOCK Component clock frequency [9]

 Full UART – – 30 MHz

Simple UART – – 46 MHz

Half Duplex UART – – 51 MHz

RX Only – – 62 MHz

TX Only – – 57 MHz

tCLOCK Сlock period 1/fCLOCK – – ns

fb Bit rate – – fCLOCK/
Oversampling

Mbps

TCLOCK
[10] Сlock tolerance

 8x Oversampling – 3.9 – %

8. The values provide a maximum safe operating frequency of the Component. The Component may run at higher
clock frequencies, at which point you will need to validate the timing requirements with STA results.

9. The maximum Component clock frequency depends on the selected mode and additional features.

10. Clock tolerance is showed for the UART configuration: 8 data bits, no parity, 1 stop bit, 2 out of 3 voting enabled.
The value for other configuration can be calculated as described later in this datasheet.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 46 of 56 Document Number: 001-97157 Rev. *D

Parameter Description Min Typ Max[8] Units

16x Oversampling – 4.6 – %

%ERR Error – STA[11] – %

tRES Reset pulse width tCLOCK + 5 – – ns

tCTS_TX CTS_N inactive to TX_EN active and start bit on
TX

1 – 2 tCLOCK

tTX_TXDATA Delay from TX to TX_DATA – 1 – tCLOCK

tTX_TXCLK Delay from TX change to TX_CLK active

 8x Oversampling – 5 – tCLOCK

16x Oversampling – 9 – tCLOCK

tS_RES Reset setup time 5 – – ns

tRTS_RX RTS_N inactive to RX data – – STA[12] ns

tRX_RXCLK

tRX_RXINT

Delay from RX to RX_CLK

 8x Oversampling 4 – 5 tCLOCK

16x Oversampling 8 – 9 tCLOCK

tRXCLK_RTS Delay from last RX_CLK raise to RTS_N active – 1 – tCLOCK

tRX_RXDATA Delay from RX to RX_DATA 0 – 1 tCLOCK

Configuration Details
Full UART options:

Mode: Full UART

Parity: Even

API control enabled: Enable

Flow Control: Hardware (pins)

Address Mode: Software Byte by Byte

RX Buffer Size (bytes) 5

TX Buffer Size (bytes) 5

Break signal bits: 13

2 out of 3 voting: Enable

CRC outputs: Enable (Output pins)

Hardware TX: Enable (Output pin)

Oversampling rate: 16x

Reset: Input pin

11. %ERR is present on the system when PSoC Creator cannot generate the exact frequency clock. The value must
be calculated as described later in this datasheet.

12. tRTS_RX value depends on the Static Timing Analysis results and must be calculated as described later in this
datasheet.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 47 of 56

Simple UART options:

Mode: Full UART

Parity: None

API control enabled: Disable

Flow Control: None

Address Mode: None

RX Buffer Size (bytes) 4

TX Buffer Size (bytes) 4

Break signal bits: None

2 out of 3 voting: Disable

CRC outputs: Disable

Hardware TX: Disable

Oversampling rate: 8x

Reset: None

Half Duplex UART options:

Mode: Half Duplex

All other options same as the Simple UART

RX Only options:

Mode: RX Only

All other options same as the Simple UART

TX Only options:

Mode: TX Only

TxBitClkGenDP False (To switch go to Expression View of Advanced tab).

All other options same as the Simple UART

Figure 1. TX Mode Timing Diagram

CTS_N

TX_EN

tCTS_TX

TX
Start

bit
0 N-1 N

Parity

bit

Stop

bit

Start

bit
0 1

TX_CLK

TX_DATA 0 N-1 N 0 1

TX_INTERRUPT

RESET

tRES

tTX_TXDATA

Clear on read Clear on reset

CLOCK

tS_RES

tTX_TXCLK

tCLOCK

8x 16x

tCLOCK

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 48 of 56 Document Number: 001-97157 Rev. *D

Figure 2. RX Mode Timing Diagram

RX N-1 N
Parity

bit

Stop

bit

Start

bit
0idle N-1 N

Parity

bit

Stop

bit

Start

bit

RX_CLK

RTS_N

RX_DATA N-1 N 0 N-1 N

RX_INTERRUPT

tRXCLK_RTS

Fifo full

tRX_RXDATA

tRX_RXCLK

Clear on read

tRTS_RX

tRX_RXINT

How to Use STA Results for Characteristics Data

Nominal route maximums are gathered through multiple test passes with Static Timing Analysis
(STA). You can calculate the maximums for your designs with the STA results using the
following mechanisms:

fCLOCK Maximum Component clock frequency appears in Timing results in the clock
summary as the IntClock (if internal clock is selected) or the named external clock.
The following graphic shows an example of the internal clock limitations from the
_timing.html.

tCLOCK Calculate clock period from the following equation:

CLOCK

CLOCK
f

1
t 

fb Bit rate is equal to сlock frequency (fCLOCK) divided by the oversampling rate. Use
oversampling rate 8x for maximum baud rate calculations, as shown in the equation
below:

ngOversampli

f
f CLOCK
b 

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 49 of 56

TCLOCK Calculate clock tolerance using the following method:

Assume that UART is configured as 8x oversampling, 2 out of 3 voting disabled, 8
data bits, parity none, and one Stop bit. The Receiver samples the RX line at the
fourth clock of every bit. A new frame is recognized by the falling edge at the
beginning of the active-low Start bit. The receive UART resets its counters on this
falling edge, and expects the mid Start bit to occur after three clock cycles, and the
midpoint of each subsequent bit to appear every eight clock cycles. If the UART clock
has 0-percent error, the sampling happens exactly at the midpoint of the Stop bit. But,
because the UART clock will not have zero error, the sampling happens earlier or
later than the midpoint on every bit. This error keeps accumulating and results in the
maximum error on the Stop bit. If you sample a bit one-half bit period (8 ÷ 2 = ±4
clocks) too early or too late, you will sample at the bit transition and have incorrect
data.

The bit transition time usually equals 25 percent of the bit time for the normal signal
quality. This value depends on RS-232 cable length, cable quality, and transceiver
parameters. These factors are not taken into account in this analysis.

Another error to include in this budget is the synchronization error when the falling
edge of the Start bit is detected. The UART starts on the next rising edge of its 8x
clock after Start bit detection. Because the 8x clock and the received data stream are
asynchronous, the falling edge of the Start bit could occur just after an 8x clock rising
edge. This means that the UART has a 1 clock error built in at the synchronization
point and this makes the clock tolerance asymmetrical. So, our error budget reduces
to +3 and -4 periods.

The total clock periods from the falling edge of the Start bit to the middle of the Stop
bit is equal to 9.5 × 8 = 76. The total clock tolerance is:

+3 ÷ 76 × 100% = +3.9%, -4 ÷ 76 × 100% = -5.2%.

The clock tolerance for 16x oversampling is:

+7 ÷ (9.5 × 16) × 100% = +4.6%

-8 ÷ (9.5 × 16) × 100% = -5.2%

The 2 out of 3 voting per bit feature makes the sampling wider on ±1 clock. For the
faster clock this doesn’t affect on clock tolerance budget because voting algorithm will
compensate one missed bit. For the slower clock case this feature affects the
following byte receive procedure. This effect could be eliminated by using 2 stop bits
feature, otherwise it makes clock tolerance requirements symmetrical and they
become:

8x oversampling, voting enabled: ±3.9%

16x oversampling, voting enabled: ±4.6%

This total tolerance must be split between the receiver and transmitter in any
proportion. For example, if the device on one side of the UART bus (microcontroller or

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 50 of 56 Document Number: 001-97157 Rev. *D

PC) runs on a standard 100-ppm crystal oscillator, the device on the other side can
use almost the entire tolerance budget.

%ERR This error is present on the system when PSoC Creator cannot generate the exact
frequency clock required by the UART because of the PLL clock frequency and
divider value. You can see the difference in the design wide resources (DWR) as the
desired and nominal frequency for the CharComp_clock. The error is calculated using
the following equation:

%100*
f

ff
%

des

nomdes
ERR




For example, for a UART configured for 115200 bits per second and 8x oversampling,
the system needs a 921.6-kHz clock. When the PLL is configured for 66 MHz, the
DWR uses a divide by 72 and generates 66000 ÷ 72 = 916,667-kHz clock. For this
example the error is:

(921.6 – 916,667) ÷ 921.6 × 100 = ~0.5%

The summation of this error plus the clock accuracy error should not exceed the clock
tolerance (TCLOCK), or you will see error in the data.

Clock accuracy depends on the selected IMO clock. It is equal to ±1% for the 3-MHz
IMO. The total error is: 0.5 + 1 = 1.5% and it is less than the minimum clock tolerance
for 8x oversampling.

Other IMO clock settings have larger accuracy error and are not recommended for
use with UART.

tCTS_TX This parameter is characterized based on the UART implementation analysis. The
state machine synchronously, to the fCLOCK clock, checks the falling edge CTS_N
signal and sets TX_EN with up to one clock delay. The TX_EN signal has additional
synchronization on the output to remove possible glitches. This adds one clock delay.
The Shift register starts pushing TX data out at the same time as the TX_EN signal
goes high.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 51 of 56

tTX_TXCLK The delay time from TX output to TX_CLK, based on the UART implementation
analysis, is equal to half a bit length and is delayed one clock to be at the middle of
the TX_DATA signal.









 1

2

ngOversampli
tt CLOCKTXCLK_TX

tTX_TXDATA This parameter is characterized based on the UART implementation analysis. The TX
signal is additionally synchronized to the fCLOCK on the TX_DATA output; therefore,
one clock delay is present between these signals.

tRES This parameter is characterized based on the UART implementation analysis and on
the results of STA. The reset input is synchronous, requiring at least one rising edge
of the Component clock. Setup time should be added to guarantee not missing the
reset signal.

RES_SCLOCKRES ttt 

tS_RES RESET activation time is the pin to internal register routing path delay time plus clock
to output delay time. This is provided in the STA results as shown below:

tRX_RXCLK The delay time from RX to RX_CLK, based on the UART implementation analysis, is
equal to half a bit length and is delayed up to one clock to be in the middle of the
RX_DATA signal.









 1

2

ngOversampli
tt CLOCKRXCLK_RX

tRX_RXINT The RX_INTERRUPT signal is generated when the Stop bit is received at RX_CLK

tRX_RXDATA The RX signal is additionally synchronized to the fCLOCK on the RX_DATA output,
therefore up to one clock delay is present between these signals.

tRXCLK_RTS Delay from the last RX_CLK raise to RTS_N active. This happens when the 4-byte
FIFO is full. The RTS_N signal is automatically set by hardware as soon as input
FIFO is full. The FIFO is loaded with one Component clock cycle delay from the last
RX_CLK rising edge.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 52 of 56 Document Number: 001-97157 Rev. *D

tRTS_RX The delay time between RTS_N Inactive to RX data is equal to:

tRTS_RX = tPD_RTS + RTSPD_PCB + tCTS_TX(transmitter) + RXPD_PCB + tS_RX]

Where:

tPD_RTS is the path delay of RTS_N to the pin. This is provided in the STA results
Clock To Output section as shown below.

RTSPD_PCB is the PCB path delay from the RTS_N pin of the receiver Component to
the CTS_N pin of the transmitter device.

tCTS_TX(transmitter) must come from the Transmitter datasheet.

RXPD_PCB is the PCB path delay from the TX pin of the transmitter device to the RX
pin of the receiver Component.

tS_RX is the path delay time of the RX signal. This is provided in the STA results
Register to Register section as shown below.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 53 of 56

Component Errata

This section lists known problems with the Component.

Cypress
ID

Component
Version

Problem Workaround

243067 All When the RX Buffer Size is greater than 4,
the UART_GetChar can read data directly
from the RX FIFO and clear error condition
statuses of the hardware. If such a case
occurs, the error conditions are not detected
in the RX interrupt handler.

Call UART_GetRxBufferSize to ensure
that the RX buffer is not empty. Then
call UART_GetChar to read data. This
flow prevents missing the error
detection, because the RX interrupt
handler always services received data
(puts data in the RX buffer and tracks
errors).

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.50.d Datasheet update. Added errata item 243067.

Added limitation for break length generation in the
UART_SendBreak function.

Updated description of UART_ReadControlRegister
and UART_WriteControlRegister functions.

2.50.c Datasheet update. Fixed broken link.

Added a note that the Component uses a different
number of P-terms in different configurations.

2.50.b Datasheet update. Added Macro Callbacks section.

Added PSoC 4 Glitch Avoidance at System Reset
section.

2.50.a Datasheet edit. Added Additional Reading section with links to
related Application Notes.

2.50 Fixed data transmission issue in Half duplex
mode.

The wrong data were sent by UART v2.40 when
multiple characters sent at once.

Refactored internal RX interrupt ISR code to read
RX status register in one place.

Previously, the RX clear-on-read error status could
be lost because of read of RX status register in
multiple places.

Updated the datasheet. Updated the numbers in the API Memory and
Resources sections.

Updated MISRA Compliance section with
Component specific deviations.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 54 of 56 Document Number: 001-97157 Rev. *D

Version Description of Changes Reason for Changes / Impact

2.40 Added software TX interrupt triggering to
UART_PutChar() API.

The transmission from TX software buffer stuck in
the dead loop when UART_PutChar() was
interrupted for time greater than transmission of full
TX FIFO.

Fixed the duration of the Stop bit transmission. The Stop bit duration had the one clock cycle
overhead for one by one data transmission.

Changed the definition from:

UART_TXBUFFERSIZE

UART_RXBUFFERSIZE

UART_RXHWADDRESS2

UART_RXHWADDRESS1

to

UART_TX_BUFFER_SIZE

UART_RX_BUFFER_SIZE

UART_RX_HW_ADDRESS2

UART_RX_HW_ADDRESS1

Add underscores between separate words to
improve readability of definitions. The Component
supports both definitions, but the old definitions are
going to become obsolete.

2.30.d Edited the datasheet. Updated TX and RX data register addresses.

Updated the Resources section.

Updated the printf section.

Update the Internal RX Interrupt section.

Rearranged a few sections to comply with the
template.

2.30.c Edited datasheet to add Component Errata
section.

Added section to explain printf function usage
model for the UART.

Document that the Component was changed, but
there is no impact to designs.

Datasheet was lacking this printf explanation.

2.30.b Edited datasheet to remove PSoC 5 reference. PSoC 5 replaced by PSoC 5LP.

2.30.a Updated datasheet with memory usage for
PSoC 4.

2.30 Fixed HalfDuplex mode. The receiver didn’t work correctly in HalfDuplex
mode when 16x oversampling rate selected.

Added MISRA Compliance section. The Component does not have any specific
deviations.

Integrated specific APIs to support the bootloader:
CyBtldrCommStart, CyBtldrCommStop,
CyBtldrCommReset, CyBtldrCommWrite,
CyBtldrCommRead.

UART could be used as a communication
Component for the Bootloader with this feature.

PSoC® Creator™ Component Datasheet Universal Asynchronous Receiver Transmitter (UART)

Document Number: 001-97157 Rev. *D Page 55 of 56

Version Description of Changes Reason for Changes / Impact

2.20 Changed sampling time with and without Voting
option. Now RX line is sampled on fourth clock
edge , and on 3th to 5th with majority voting
enabled.

Refer to section “2 out of 3 Voting” for more
details.

This change gives symmetrical clock tolerance.

Added PSoC 5LP support.

2.10 Changed the parameter type for
UART_PutString() API from uint8* to char*.

The common usage of this API is with an embedded
string as a parameter: UART_PutString(“Hello
World”). The “char“ type should be used for this
usage without compiler warnings.

UART_ClearRxBuffer()/ UART_ClearTxBuffer()
APIs clears hardware FIFO too.

Hardware FIFO needs to be cleared to guarantee
that no more data is pending for
reception/transmission.

Fixed typo with the parameter for
UART_SendBreak() API.
UART_WAIT_FOR_COMLETE_REINT changed
to UART_WAIT_FOR_COMPLETE_REINT.

Typo fix.

Added all UART APIs with CYREENTRANT
keyword when they included in .cyre file.

Not all APIs are truly reentrant. Comments in the
Component API source files indicate which functions
are candidates.

This change is required to eliminate compiler
warnings for functions that are not reentrant used in
a safe way: protected from concurrent calls by flags
or Critical Sections.

Updated Address Mode functionality. These modes are upgraded for automatically skip
unaddressed packets.

Fixed Hardware Flow control mode when internal
RX buffer is used. The code in the RX ISR stops
to read data from the FIFO when internal buffer
overruns. As a result, the RTS signal holds the
transmitter UART.

The data was read from the hardware FIFO and
moved to the s/w buffer regardless of whether the
s/w buffer has overrun.

Updated internal clock Component with
cy_clock_v1_60.

Clock v1_60 is the latest Component version.

Limited RX and TX Buffer Size minimum value to
4.

UART always uses 4 bytes FIFO as a buffer.

Minor datasheet edits and updates

2.0.a Minor datasheet edits and updates

2.0 tx_en output registered Any combinatorial output can glitch, depend on
placement and delay between signals.

To remove glitching the outputs should be
registered.

Universal Asynchronous Receiver Transmitter (UART) PSoC® Creator™ Component Datasheet

Page 56 of 56 Document Number: 001-97157 Rev. *D

Version Description of Changes Reason for Changes / Impact

Reset input registered. Registering improves maximum baud rate when
Reset input is used.

Added characterization data to datasheet

Minor datasheet edits and updates

1.50 Added Sleep/Wakeup and Init/Enable APIs. To support low-power modes, as well as to provide
common interfaces to separate control of
initialization and enabling of most Components.

Break signal has length selection (11 to 14 bits)
and added parameter to SendBreak function.

Break signal length for UART is not specified,
therefore 11 to 14 bits selection is provided.

Added 16x oversampling mode. 16x oversample mode reduces jitter effect on error
at higher speeds.

Software option removed from Parity Type
selection, API control enabled check box has
been added instead.

This allowed a way to select a default value when
needed parity API control.

If updating from version 1.20 of the UART
Component with this option selected, it is
recommended to select the "None" parity option in
version 1.50.

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical Components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical Component is any
Component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a UART
	PSoC 4 Glitch Avoidance at System Reset
	Additional Reading

	Input/Output Connections
	Schematic Macro Information
	Component Parameters
	Hardware versus Software Options
	Configure Tab
	Mode
	Bits per second
	Data bits
	Parity Type
	API control enabled
	Stop bits
	Flow Control

	Advanced Tab
	Hardware Configuration Options
	Clock Selection
	Address Mode
	RX Address #1/#2
	Advanced Features
	Hardware TX Enable
	Oversampling Rate

	Software Configuration Options
	Interrupts
	RX Buffer Size (bytes)
	TX Buffer Size (bytes)
	Internal RX Interrupt ISR
	Internal TX Interrupt ISR

	Clock Selection
	Application Programming Interface
	Functions
	void UART_Start(void)
	void UART_Stop(void)
	uint8 UART_ReadControlRegister(void)
	void UART_WriteControlRegister(uint8 control)
	void UART_EnableRxInt(void)
	void UART_DisableRxInt(void)
	void UART_SetRxInterruptMode(uint8 intSrc)
	uint8 UART_ReadRxData(void)
	uint8 UART_ReadRxStatus(void)
	uint8 UART_GetChar(void)
	uint16 UART_GetByte(void)
	uint8/uint16 UART_GetRxBufferSize(void)
	void UART_ClearRxBuffer(void)
	void UART_SetRxAddressMode(uint8 addressMode)
	void UART_SetRxAddress1(uint8 address)
	void UART_SetRxAddress2(uint8 address)
	void UART_EnableTxInt(void)
	void UART_DisableTxInt(void)
	void UART_SetTxInterruptMode(uint8 intSrc)
	void UART_WriteTxData(uint8 txDataByte)
	uint8 UART_ReadTxStatus(void)
	void UART_PutChar(uint8 txDataByte)
	void UART_PutString(const char8 string[])
	void UART_PutArray(const uint8 string[], uint8/uint16 byteCount)
	void UART_PutCRLF(uint8 txDataByte)
	uint8/uint16 UART_GetTxBufferSize(void)
	void UART_ClearTxBuffer(void)
	void UART_SendBreak(uint8 retMode)
	void UART_SetTxAddressMode(uint8 addressMode)
	void UART_LoadRxConfig(void)
	void UART_LoadTxConfig(void)
	void UART_Sleep(void)
	void UART_Wakeup(void)
	void UART_Init(void)
	void UART_Enable(void)
	void UART_SaveConfig(void)
	void UART_RestoreConfig(void)

	Global Variables
	Defines
	Bootloader Support
	void UART_CyBtldrCommStart(void)
	void UART_CyBtldrCommStop(void)
	void UART_CyBtldrCommReset(void)
	cystatus UART_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	cystatus UART_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

	Macro Callbacks
	Sample Firmware Source Code
	Source Code Example for ISR routine
	Printf() function Usage Model

	MISRA Compliance
	API Memory Usage

	Functional Description
	Block Diagram
	Default Configuration
	UART Mode: Full UART (RX+TX)
	UART Mode: Half Duplex
	UART Mode: RX Only
	UART Mode: TX Only
	UART Flow Control: None, Hardware
	UART Parity: None
	UART Parity: Odd
	UART Parity: Even
	UART Parity: Mark/Space, Data bits: 9
	TX Usage Model
	RX Usage Model
	1. Software Byte by Byte
	2. Software Detect to Buffer
	3. Hardware Byte By Byte
	4. Hardware Detect to Buffer

	UART Stop Bits: One, Two
	2 out of 3 Voting

	Registers
	RX and TX Status
	RX Status Register
	TX Status Register

	Control
	UART_CTRL_HD_SEND
	UART_CTRL_HD_SEND_BREAK
	UART_CTRL_MARK
	UART_CTRL_PARITY_TYPE_MASK
	UART_CTRL_RXADDR_MODE_MASK

	TX Data (8-bits)
	RX Data
	Constants

	Resources
	DC and AC Electrical Characteristics
	DC Characteristics
	AC Characteristics
	Configuration Details
	How to Use STA Results for Characteristics Data

	Component Errata
	Component Changes

