

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 001-97376 Rev. *C Revised November 22, 2017

Features

▪ Industry-standard NXP® I2C bus interface

▪ Supports slave, master, multi-master and multi-master-slave operation

▪ Requires only two pins (SDA and SCL) to interface to I2C bus

▪ Supports standard data rates of 100/400/1000 kbps

▪ High-level APIs require minimal user programming

General Description

The I2C component supports I2C slave, master, and multi-master configurations. The I2C bus is
an industry-standard, two-wire hardware interface developed by Philips. The master initiates all
communication on the I2C bus and supplies the clock for all slave devices.

The I2C component supports standard clock speeds up to 1000 kbps. It is compatible [1] with I2C
Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I2C-bus
specification. The I2C component is compatible with other third-party slave and master devices.

Note This version of the component datasheet covers both the fixed hardware I2C block and the
UDB version.

1. The I2C peripheral is non-compliant with the NXP I2C specification in the following areas: analog glitch filter, I/O
VOL/IOL, I/O hysteresis. The I2C Block has a digital glitch filter (not available in sleep mode). The Fast-mode
minimum fall-time specification can be met by setting the I/Os to slow speed mode. See the I/O Electrical
Specifications in "Inputs and Outputs" section of device datasheet for details.

I2C Master/Multi-Master/Slave
3.50

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 2 of 61 Document Number: 001-97376 Rev. *C

When to Use an I2C Component

The I2C component is an ideal solution when networking multiple devices on a single board or
small system. The system can be designed with a single master and multiple slaves, multiple
masters, or a combination of masters and slaves.

I2C Temperature
Sensors

Vcc

I2C Serial
EEPROMs

Bridges
(with I2C)

I2C A/D or D/A
Convertors

SPI
UART

USB

I2C LED
Controlers

MCUs
(with I2C)

Input/Output Connections

This section describes the various input and output connections for the I2C component. An
asterisk (*) in the list of I/Os indicates that the I/O may be hidden on the symbol under the
conditions listed in the description of that I/O.

sda – In/Out

Serial data (SDA) is the I2C data signal. It is a bidirectional data signal used to transmit or
receive all bus data. The pin connected to sda should be configured as Open-Drain-Drives-Low.

scl – In/Out

Serial clock (SCL) is the master-generated I2C clock. Although the slave never generates the
clock signal, it may hold the clock low, stalling the bus until it is ready to send data or ACK/NAK[2]
the latest data or address. The pin connected to scl should be configured as Open-Drain-Drives-
Low.

Note The default threshold voltages for the Pins component is CMOS. When the I2C lines are
pulled up to 3.3 V and the PSoC is running on 5.0 V, the CMOS threshold levels may not
guarantee reliable logic transitions. In this case, the SCL and SDA pin component thresholds
should be set to TTL.

2 NAK is an abbreviation for negative acknowledgment or not acknowledged. I2C documents commonly use
NACK while the rest of the networking world uses NAK. They mean the same thing.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 3 of 61

clock – Input *

The clock input is available when the Implementation parameter is set to UDB. The UDB
version needs a clock to provide 16 times oversampling.

Bus Clock

50 kbps 800 kHz

100 kbps 1.6 MHz

400 kbps 6.4 MHz

1000 kbps 16 MHz

reset – Input *

The reset input is available when the Implementation parameter is set to UDB. If the reset pin is
held to logic high, the I2C block is held in reset, and communication over I2C stops. This is a
hardware reset only. Software must be independently reset calling the I2C_Stop() and
I2C_Start() or I2C_Enable() APIs. The reset input may be left floating with no external
connection. If nothing is connected to the reset line, the component will assign it a constant logic
"0".

I2C Bus Multiplexing

The following inputs and outputs are only available when the External OE buffer option is
selected (on the Advanced tab). The tri-state buffers (placed side the component) are removed,
and bidirectional scl and sda terminals are replaced with separate sda_i and scl_i inputs, as well
as sda_o and scl_o outputs. This allows I2C bus multiplexing inside PSoC.

▪ scl_i – Input * – Serial clock input clock signal used to sense the bus clock line.

▪ scl_o – Output * – Serial clock output signal used to drive the bus clock line.

▪ sda_i – Input * – Serial data input signal used to sense the bus data line.

▪ sda_o – Output * – Serial data output signal used to drive the bus data line.

The appropriate pair of signals (input and output) must be connected to the pin component to
drive the pin. The scl_i and scl_o has to be connected to SCL pin and sda_i and sda_o to SDA
pin appropriately. The signals to pin connection options are depicted on the Figure 5.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 4 of 61 Document Number: 001-97376 Rev. *C

Schematic Macro Information

By default, the PSoC Creator Component Catalog contains four schematic macro
implementations for the I2C component. These macros contain already connected and
configured pins and provide a clock source, as needed. The schematic macros use I2C Slave
and Master components, configured for fixed-function and UDB hardware, as shown below.

Fixed-Function I2C Slave with Pins Fixed-Function I2C Master Pins

UDB I2C Slave with Clock and Pins UDB I2C Master with Clock and Pins

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 5 of 61

Component Parameters

Drag an I2C component onto your design and double-click it to open the Configure dialog.

General Tab

The General tab has the following parameters:

Mode

Use this option to select the I2C mode: slave, master, multi-master, or multi-master-slave.

Mode Description

Slave Slave-only operation (default).

Master Master-only operation.

Multi-Master Supports more than one master on the bus.

Multi-Master-Slave Simultaneous slave and multi-master operation.

Note For slave modes (slave or multi-master-slave), Implementation is Fixed function and
Address decode is Hardware. The usage of I2C repeated Start condition to join transactions to
different devices is not supported. If the I2C master accesses other I2C devices and then
generates a repeated Start to access the component, the component fails to operate properly. If
I2C transactions of this type cannot be avoided, set Implementation to UDB or change Address
decode to Software.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 6 of 61 Document Number: 001-97376 Rev. *C

Data rate

This parameter is used to set the I2C data rate value up to 1000 kbps. The standard data rates [3]
are 50, 100 (default), 400, and 1000 kbps. The component also displays the actual data rate at
which the component will operate with current settings. The factors that affect the actual data
rate calculation include the accuracy of the component clock (internal or external) and
oversampling factor. For more information about these parameters, refer to the Clock Selection
section.

If Implementation is set to UDB and the UDB clock source parameter is set to External clock,
the Data rate parameter is ignored; the 16x input clock determines the data rate.

There are cases when the system cannot build the desired I2C clock and the selected data rate
cannot be supported. The component does not provide an error or warning in this case, but the
actual data rate may differ significantly from the selected data rate. For example, if the I2C fixed-
function block selected data rate is 400 kbps and the BUS_CLK = 3MHz, the required I2C clock
is 16 * 400 kHz = 6.4 MHz, which cannot be created from the BUS_CLK.

Note For master modes (master, multi-master, or multi-master-slave), Implementation is UDB.
The real master speed for data rates above 400 kbps may differ depending on the BUS_CLK
value, rise and fall times of fSCL

[4], and component placement.

Slave address

This is the I2C address that will be recognized by the slave. If slave operation is not selected, this
parameter is ignored. You can select a slave address between 0 and 127 (0x00 and 0x7F); the
default is 8. This address is the 7-bit right-justified slave address and does not include the R/W
bit. You can enter the value as decimal or hexadecimal; for hexadecimal numbers type ‘0x’
before the address. If a 10-bit slave address is required, you must use software address
decoding and provide decode support for the second byte of the 10-bit address in the ISR.

Implementation

This option determines how the I2C hardware is implemented on the device.

Implementation Description

Fixed Function Use the fixed-function block on the device (default).

UDB Implement the I2C in the UDB array.

3 The fixed-function implementation supports only standard data rates 50, 100, and 400 kbps for PSoC 5LP
devices. The UDB-based implementation should be used for different data rates up to 1000 kbps.

4 Refer to the I2C-Bus Specification Rev. 6, section 7.2.1 Reduced fSCL.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 7 of 61

Address decode

This parameter allows you to choose between software and hardware address decoding. For
most applications where the provided APIs are sufficient and only one slave address is required,
hardware address decoding (default) is preferred. In applications where you prefer to modify the
source code to provide detection of multiple slave addresses or 10-bit addresses, you must use
software address detection.

If hardware address decode is enabled, the block automatically NAKs addresses that are not its
own without CPU intervention. It automatically interrupts the CPU on correct address reception,
and holds the SCL line low until CPU intervention.

Pins

This parameter determines which type of pins to use for SDA and SCL signal connections. There
are three possible values: Any (default), I2C0, and I2C1.

Value Pins

Any Any GPIO or SIO pins through schematic routing

I2C0 SCL = SIO pin P12[4], SDA = SIO pin P12[5]

I2C1 SCL = SIO pin P12[0], SDA = SIO pin P12[1]

Any means general-purpose I/O (GPIO or SIO) are used for SCL and SDA pins. This is a
general usage case when wakeup from Sleep mode on slave address match is not required.
Otherwise, select the Enable wakeup from Sleep Mode option and set Pins to I2C0 or I2C1,
depending on the placement capabilities.

Note The I2C component does not check the correct pin assignments.

Enable wakeup from Sleep Mode

This option allows the system to be awakened from Sleep when an address match occurs. This
option is only valid if Address decode is set to hardware and the SDA and SCL signals are
connected to SIO pins (I2C0 or I2C1). The option is disabled by default. This option is supported
by the PSoC 3 and PSoC 5LP devices.

You must enable the possibility for the I2C to wake up the device on slave address match while
switching to the sleep mode. You can do this by calling the I2C_Sleep() API; also refer to the
Wakeup on Hardware Address Match section and to the "Power Management APIs" section of
the System Reference Guide.

UDB clock source

This parameter allows you to choose between an internally configured clock and an externally
configured clock for data rate generation. When set to Internal clock, PSoC Creator calculates
and configures the required clock frequency based on the Data rate parameter, taking into
account 16 times oversampling. In External clock mode the component does not control the

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 8 of 61 Document Number: 001-97376 Rev. *C

data rate but displays the actual data rate based on the user-connected clock source. If this
parameter is set to Internal clock then the clock input is not visible on the symbol.

You can enter the desired tolerance values for the internal clock. Clock tolerances are specified
as a percentage. The default range for slave mode is -5% to +50%. The clock can be fast in this
mode. For the remaining modes, the default range is -25% to +5%. Again, the master can be
slow. At the maximum data rate (1000 kbps), the clock should be equal or slower, but not faster
than expected. This could cause unexpected behavior.

Enable UDB slave fixed placement

This parameter allows you to choose a fixed component placement that improves the component
performance over unconstrained placement. If this parameter is set, all of the component
resources are fixed in the top right corner of the device. This parameter controls the assignment
of pins connected to the component. The choice of pin assignment is not a determining factor for
component performance. This option is only valid if Mode is set to Slave and Implementation is
set to UDB. This option is disabled by default.

The fixed placement aspect of the component removes the routing variability. It also allows the
fixed placement to continue to operate the same as a non-fixed placed design would in a fairly
empty design.

Advanced Tab

The Advanced tab has the following parameter:

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 9 of 61

External OE buffer

This parameter allows I2C bus multiplexing inside the PSoC. The tri-state buffers (placed inside
the component) are removed, and bidirectional scl and sda terminals are replaced with separate
inputs (sda_i and scl_i) and outputs (sda_o and scl_o). Refer to Internal I2C Bus Multiplexing
section for more information and usage cases.

Clock Selection

When the internal clock configuration is selected, PSoC Creator calculates the needed frequency
of the I2C clock source and generates the resource for implementation. Otherwise, you must
supply the I2C clock and calculate the required clock frequency (only the UDB implementation
provides a choice between internal and external clock). That frequency is 16x the desired data
rate available. For example, a 1.6 MHz clock is required for a 100 kbps data rate.

The fixed-function block uses a divided BUS_CLK. The divider is calculated to achieve the 16/32
oversampling of the selected data rate (50 kbps data rate requires 32 oversampling; all other
data rates require 16 oversampling).

External Electrical Connections

As shown in the following figure, the I2C bus requires external pull-up resistors. The pull-up
resistors (RP) are primarily determined by the supply voltage, bus speed, and bus capacitance.
For detailed information on how to calculate the optimum pull-up resistor value for your design
we recommend using the UM10204 I2C-bus specification and user manual Rev. 6, available from
the NXP website at www.nxp.com.

An alternative to using external pull-up resistors is to use the pins internal pull-up resistors. To
use this option, the SCL and SDA pins drive modes must be set to resistive pull-up. Typical
internal PSoC pull-ups are 5.6 kΩ with a tolerance exceeding 5%. Therefore, it is not
recommended to use them in other than Standard mode, after validating that the minimum and
maximum values meet the requirements of your system.

http://www.nxp.com/

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 10 of 61 Document Number: 001-97376 Rev. *C

Figure 1. Connection of Devices to the I2C Bus

Device 1

SDA (Serial Data Line)

SCL (Serial Clock Line)

Device 2

Rp Rp

+VDD

pull-up

resistors

For most designs, the default values shown in the following table provide excellent performance
without any calculations. The default values were chosen to use standard resistor values
between the minimum and maximum limits.

Table 1. Recommended Default Pull-up Resistor Values

Standard Mode
(0 – 100 kbps)

Fast Mode
(0 – 400 kbps)

Fast Mode Plus
(0 – 1000 kbps)

Units

4.7 k, 5% 1.74 k, 1% 620, 5% Ω

These values work for designs with 1.8 V to 5.0V VDD, less than 200 pF bus capacitance (CB), up
to 25 µA of total input leakage (IIL), up to 0.4 V output voltage level (VOL), and a max VIH of 0.7 *
VDD.

Standard Mode and Fast Mode can use either GPIO or SIO PSoC pins. Fast Mode Plus requires
use of SIO pins to meet the VOL spec at 20 mA. Calculation of custom pull-up resistor values is
required if; your design does not meet the default assumptions, you use series resistors (RS) to
limit injected noise, or you want to maximize the resistor value for low power consumption.

Calculation of the ideal pull-up resistor value involves finding a value between the limits set by
three equations detailed in the NXP I2C specification. These equations are:

 Equation 1: RPMIN = (VDD(max) – VOL(max)) / IOL(min)

 Equation 2: RPMAX = TR(max) / 0.8473 x CB(max)

 Equation 3: RPMAX = VDD(min) – (VIH(min) + VNH(min)) / IIH(max)

Equation parameters:

▪ VDD = Nominal supply voltage for I2C bus

▪ VOL = Maximum output low voltage of bus devices.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 11 of 61

▪ IOL= Low level output current from I2C specification

▪ TR = Rise Time of bus from I2C specification

▪ CB = Capacitance of each bus line including pins and PCB traces

▪ VIH = Minimum high level input voltage of all bus devices

▪ VNH = Minimum high level input noise margin from I2C specification

▪ IIH = Total input leakage current of all devices on the bus

The supply voltage (VDD) limits the minimum pull-up resistor value due to bus devices maximum
low output voltage (VOL) specifications. Lower pull-up resistance increases current through the
pins and can therefore exceed the spec conditions of VOH. Equation 1 is derived using Ohm’s law
to determine the minimum resistance that will still meet the VOL specification at 3 mA for standard
and fast modes, and 20 mA for fast mode plus at the given VDD.

Equation 2 determines the maximum pull-up resistance due to bus capacitance. Total bus
capacitance is comprised of all pin, wire, and trace capacitance on the bus. The higher the bus
capacitance the lower the pull-up resistance required to meet the specified bus speeds rise time
due to RC delays. Choosing a pull-up resistance higher than allowed can result in failing timing
requirements resulting in communication errors. Most designs with five of fewer I2C devices and
up to 20 centimeters of bus trace length have less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor value is total bus leakage calculated
in Equation 3. The primary source of leakage is I/O pins connected to the bus. If leakage is too
high, the pull-ups will have difficulty maintaining an acceptable VIH level causing communication
errors. Most designs with five or fewer I2C devices on the bus have less than 10 µA of total
leakage current.

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component during
run time. The following table lists and describes the interface to each function. The subsequent
sections discuss each function in more detail.

By default, PSoC Creator assigns the instance name "I2C_1" to the first instance of a component
in a given design. You can rename the instance to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
"I2C."

All API functions assume that data direction is from the perspective of the I2C master. A write
event occurs when data is written from the master to the slave. A read event occurs when the
master reads data from the slave.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 12 of 61 Document Number: 001-97376 Rev. *C

Generic Functions

This section includes the functions that are generic to I2C slave or master operation.

Function Description

I2C_Start() Initializes and enables the I2C component. The I2C interrupt is enabled, and the
component can respond to I2C traffic.

I2C_Stop() Stops responding to I2C traffic (disables the I2C interrupt).

I2C_EnableInt() Enables interrupt, which is required for most I2C operations.

I2C_DisableInt() Disables interrupt. The I2C_Stop() API does this automatically.

I2C_Sleep() Stops I2C operation and saves I2C nonretention configuration registers (disables the
interrupt). Prepares wake on address match operation if Wakeup from Sleep Mode is
enabled (disables the I2C interrupt).

I2C_Wakeup() Restores I2C nonretention configuration registers and enables I2C operation (enables the
I2C interrupt).

I2C_Init() Initializes I2C registers with initial values provided from the customizer.

I2C_Enable() Activates I2C hardware and begins component operation.

I2C_SaveConfig() Saves I2C nonretention configuration registers (disables the I2C interrupt).

I2C_RestoreConfig() Restores I2C nonretention configuration registers saved by I2C_SaveConfig() or
I2C_Sleep() (enables the I2C interrupt).

void I2C_Start(void)

Description: This is the preferred method to begin component operation. I2C_Start() calls the I2C_Init()
function, and then calls the I2C_Enable() function. I2C_Start() must be called before I2C bus
operation.

This API enables the I2C interrupt. Interrupts are required for most I2C operations.

You must set up the I2C Slave buffers before this function call to avoid reading or writing
partial data while the buffers are setting up.

I2C slave behavior is as follows when enabled and buffers are not set up:

• I2C Read transfer – Returns 0xFF until the read buffer is set up. Use the
I2C_SlaveInitReadBuf() function to set up the read buffer.

• I2C Write transfer – Send NAK because there is no place to store received data. Use
the I2C_SlaveInitWriteBuf() function to set up the read buffer.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 13 of 61

void I2C_Stop(void)

Description: This function disables I2C hardware and component interrupt.

Releases the I2C bus if it was locked up by the device and sets it to the idle state.

Parameters: None

Return Value: None

Side Effects: None

void I2C_EnableInt(void)

Description: This function enables the I2C interrupt. Interrupts are required for most operations.

Parameters: None

Return Value: None

Side Effects: None

void I2C_DisableInt(void)

Description: This function disables the I2C interrupt. This function is not normally required because the
I2C_Stop() function disables the interrupt.

Parameters: None

Return Value: None

Side Effects: If the I2C interrupt is disabled while the I2C is still running, it can cause the I2C bus to lock
up.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 14 of 61 Document Number: 001-97376 Rev. *C

void I2C_Sleep(void)

Description: This is the preferred method to prepare the component before device enters sleep mode.

The Enable wakeup from Sleep Mode selection influences this function implementation:

• Unchecked: Checks current I2C component state, saves it, and disables the
component by calling I2C_Stop() if it is currently enabled. I2C_SaveConfig() is then
called to save the component nonretention configuration registers.

• Checked: If a transaction intended for component executes during this function call, it
waits until the current transaction is completed. All subsequent I2C traffic intended for
component is NAKed until the device is put to sleep mode. The address match event
wakes up the device.

Call the I2C_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. See the PSoC Creator System Reference Guide for more information about
power-management functions.

Parameters: None

Return Value: None

Side Effects: None

void I2C_Wakeup(void)

Description: This is the preferred method to prepare the component for active mode operation (when
device exits sleep mode).

The Enable wakeup from Sleep Mode selection influences this function implementation:

• Unchecked: Restores the component nonretention configuration registers by calling
I2C_RestoreConfig(). If the component was enabled before the I2C_Sleep() function
was called, I2C_Wakeup() re-enables it.

• Checked: Enables master functionality if it was enabled before sleep, and disables
the backup regulator of the I2C hardware. The incoming transaction continues as soon
as the regular I2C interrupt handler is set up (global interrupts has to be enabled to
service I2C component interrupt).

Parameters: None

Return Value: None

Side Effects: Calling the I2C_Wakeup() function without first calling the I2C_Sleep() or I2C_SaveConfig()
function can produce unexpected behavior.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 15 of 61

void I2C_Init(void)

Description: This function initializes or restores the component according to the customizer Configure
dialog settings. It is not necessary to call I2C_Init() because the I2C_Start() API calls this
function, which is the preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: All registers will be set to values according to the customizer Configure dialog.

void I2C_Enable(void)

Description: This function activates the hardware and begins component operation. It is not necessary
to call I2C_Enable() because the I2C_Start() API calls this function, which is the preferred
method to begin component operation. If this API is called, I2C_Start() or I2C_Init() must be
called first.

Parameters: None

Return Value: None

Side Effects: None

void I2C_SaveConfig(void)

Description: The Enable wakeup from Sleep Mode selection influences this function implementation:

• Unchecked: Stores the component nonretention configuration registers.

• Checked: Disables the master, if it was enabled before, and enables backup regulator
of the I2C hardware. If a transaction intended for component executes during this
function call, it waits until the current transaction is completed and I2C hardware is
ready to enter sleep mode. All subsequent I2C traffic is NAKed until the device is put
into sleep mode.

Parameters: None

Return Value: None

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 16 of 61 Document Number: 001-97376 Rev. *C

void I2C_RestoreConfig(void)

Description: The Enable wakeup from Sleep Mode selection influences this function implementation:

• Unchecked: Restores the component nonretention configuration registers to the state
they were in before I2C_Sleep() or I2C_SaveConfig() was called.

• Checked: Enables master functionality, if it was enabled before, and disables the
backup regulator of the I2C hardware. Sets up the regular component interrupt
handler and generates the component interrupt if it was wake up source to release
the bus and continue in-coming I2C transaction.

Parameters: None

Return Value: None

Side Effects: Calling this function without first calling the I2C_Sleep() or I2C_SaveConfig() function can
produce unexpected behavior.

Slave Functions

This section lists the functions that are used for I2C slave operation. These functions are
available if slave operation is enabled.

Function Description

I2C_SlaveStatus() Returns the slave status flags.

I2C_SlaveClearReadStatus() Returns the read status flags and clears the slave read status flags.

I2C_SlaveClearWriteStatus() Returns the write status and clears the slave write status flags.

I2C_SlaveSetAddress() Sets the slave address, a value between 0 and 127 (0x00 to 0x7F).

I2C_SlaveInitReadBuf() Sets up the slave receive data buffer. (master <- slave)

I2C_SlaveInitWriteBuf() Sets up the slave write buffer. (master -> slave)

I2C_SlaveGetReadBufSize() Returns the number of bytes read by the master since the buffer was reset.

I2C_SlaveGetWriteBufSize() Returns the number of bytes written by the master since the buffer was reset.

I2C_SlaveClearReadBuf() Resets the read buffer counter to zero.

I2C_SlaveClearWriteBuf() Resets the write buffer counter to zero.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 17 of 61

uint8 I2C_SlaveStatus(void)

Description: This function returns the slave’s communication status.

Parameters: None

Return Value: uint8: Current status of I2C slave. This status incorporates read and write status flags.

Each constant is a bit field value. The value returned may have multiple bits set to indicate
the status of the read or write transfer.

Slave Status Constants Description

I2C_SSTAT_RD_CMPLT[5] Slave read transfer complete. Set when the master sends a
NAK to say that it is done reading.

I2C_SSTAT_RD_BUSY Slave read transfer in progress. Set when the master
addresses the slave with a read, cleared when RD_CMPLT
is set.

I2C_SSTAT_RD_ERR_OVFL The master attempted to read more bytes than are in the
buffer.

I2C_SSTAT_WR_CMPLT[6] Slave write transfer complete. Set when a Stop condition is
received.

I2C_SSTAT_WR_BUSY Slave write transfer in progress. Set when the master
addresses the slave with a write and cleared when
WR_CMPLT is set.

I2C_SSTAT_WR_ERR_OVFL The master attempted to write past the end of the buffer.
The incoming byte is NAKed by the slave.

Side Effects: None

uint8 I2C_SlaveClearReadStatus(void)

Description: This function clears the read status flags and returns their values.

The I2C_SSTAT_RD_BUSY flag is not affected by this function call.

Parameters: None

Return Value: uint8: Current read status of the I2C slave. See the I2C_SlaveStatus() function for
constants.

Side Effects: None

5 The definition was changed from I2C_SSTAT_RD_CMPT to I2C_SSTAT_RD_CMPLT to comply with the
master read complete definition. The component supports both definitions, but the I2C_SSTAT_RD_CMPT will
become obsolete.

6 The definition was changed from I2C_SSTAT_WR_CMPT to I2C_SSTAT_WR_CMPLT to comply with the
master write complete definition. The component supports both definitions, but the I2C_SSTAT_WR_CMPT will
become obsolete.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 18 of 61 Document Number: 001-97376 Rev. *C

uint8 I2C_SlaveClearWriteStatus(void)

Description: This function clears the write status flags and returns their values.

The I2C_SSTAT_WR_BUSY flag is not affected by this function call.

Parameters: None

Return Value: uint8: Current write status of the I2C slave. See the I2C_SlaveStatus() function for
constants.

Side Effects: None

void I2C_SlaveSetAddress(uint8 address)

Description: This function sets the I2C slave address

Parameters: uint8 address: I2C slave address for the primary device. This value can be any address
between 0 and 127 (0x00 to 0x7F). This address is the 7-bit right-justified slave address
and does not include the R/W bit.

Return Value: None

Side Effects: None

void I2C_SlaveInitReadBuf(uint8 * rdBuf, uint8 bufSize)

Description: This function sets the buffer pointer and size of the read buffer. This function also resets
the transfer count returned with the I2C_SlaveGetReadBufSize() function.

Parameters: uint8* rdBuf: Pointer to the data buffer to be read by the master.

uint8 bufSize: Size of the buffer exposed to the I2C master.

Return Value: None

Side Effects: If this function is called during a bus transaction, data from the previous buffer location and
the beginning of the current buffer may be transmitted.

void I2C_SlaveInitWriteBuf(uint8 * wrBuf, uint8 bufSize)

Description: This function sets the buffer pointer and size of the write buffer. This function also resets
the transfer count returned with the I2C_SlaveGetWriteBufSize() function.

Parameters: uint8* wrBuf: Pointer to the data buffer to be written by the master.

uint8 bufSize: Size of the write buffer exposed to the I2C master.

Return Value: None

Side Effects: If this function is called during a bus transaction, data may be received in the previous
buffer and the current buffer location.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 19 of 61

uint8 I2C_SlaveGetReadBufSize(void)

Description: This function returns the number of bytes read by the I2C master since an
I2C_SlaveInitReadBuf() or I2C_SlaveClearReadBuf() function was executed.

The maximum return value is the size of the read buffer.

Parameters: None

Return Value: uint8: Bytes read by the master.

Side Effects: None

uint8 I2C_SlaveGetWriteBufSize(void)

Description: This function returns the number of bytes written by the I2C master since an
I2C_SlaveInitWriteBuf() or I2C_SlaveClearWriteBuf() function was executed.

The maximum return value is the size of the write buffer.

Parameters: None

Return Value: uint8: Bytes written by the master.

Side Effects: None

void I2C_SlaveClearReadBuf(void)

Description: This function resets the read pointer to the first byte in the read buffer. The next byte the
master reads will be the first byte in the read buffer.

Parameters: None

Return Value: None

Side Effects: None

void I2C_SlaveClearWriteBuf(void)

Description: This function resets the write pointer to the first byte in the write buffer. The next byte the
master writes will be the first byte in the write buffer.

Parameters: None

Return Value: None

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 20 of 61 Document Number: 001-97376 Rev. *C

Master and Multi-Master Functions

These functions are only available if master or multi-master mode is enabled.

Function Description

I2C_MasterStatus() Returns the master status.

I2C_MasterClearStatus() Returns the master status and clears the status flags.

I2C_MasterWriteBuf() Writes the referenced data buffer to a specified slave address.

I2C_MasterReadBuf() Reads data from the specified slave address and places the data in the
referenced buffer.

I2C_MasterSendStart() Sends only a Start to the specific address.

I2C_MasterSendRestart() Sends only a Restart to the specified address.

I2C_MasterSendStop() Generates a Stop condition.

I2C_MasterWriteByte() Writes a single byte. This is a manual command that should only be used with
the I2C_MasterSendStart() or I2C_MasterSendRestart() functions.

I2C_MasterReadByte() Reads a single byte. This is a manual command that should only be used with
the I2C_MasterSendStart() or I2C_MasterSendRestart() functions.

I2C_MasterGetReadBufSize() Returns the byte count of data read since the I2C_MasterClearReadBuf()
function was called.

I2C_MasterGetWriteBufSize() Returns the byte count of the data written since the I2C_MasterClearWriteBuf()
function was called.

I2C_MasterClearReadBuf() Resets the read buffer pointer back to the beginning of the buffer.

I2C_MasterClearWriteBuf() Resets the write buffer pointer back to the beginning of the buffer.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 21 of 61

uint8 I2C_MasterStatus(void)

Description: This function returns the master’s communication status.

Parameters: None

Return Value: uint8: Current status of the I2C master. Each constant is a bit field value. The value returned
may have multiple bits set to indicate the status of the transfer along with the generation of
error conditions.

Master status constants Description

I2C_MSTAT_RD_CMPLT Read transfer complete.

The error condition bits must be checked to ensure that
the read transfer was successful.

I2C_MSTAT_WR_CMPLT Write transfer complete.

The error condition bits must be checked to ensure that
the write transfer was successful.

I2C_MSTAT_XFER_INP Transfer in progress

I2C_MSTAT_XFER_HALT Transfer has been halted. The I2C bus is waiting for

the master to generate a Restart or Stop condition.

I2C_MSTAT_ERR_SHORT_XFER Error condition: Write transfer completed before all
bytes were transferred.

I2C_MSTAT_ERR_ADDR_NAK Error condition: The slave did not acknowledge the
address.

I2C_MSTAT_ERR_ARB_LOST Error condition: The master lost arbitration during
communication with the slave.

I2C_MSTAT_ERR_XFER Error condition: This is the ORed value of error
conditions provided in this table.

If all error condition bits are cleared, but this bit is set,
the transfer was aborted because of slave operation.

Side Effects: None

uint8 I2C_MasterClearStatus(void)

Description: This function clears all status flags and returns the master status.

Parameters: None

Return Value: uint8: Current status of the master. See the I2C_MasterStatus() function for constants.

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 22 of 61 Document Number: 001-97376 Rev. *C

uint8 I2C_MasterWriteBuf(uint8 slaveAddress, uint8 * wrData, uint8 cnt, uint8 mode)

Description: This function automatically writes an entire buffer of data to a slave device. After the data
transfer is initiated by this function, the included ISR manages further data transfer in byte-by-
byte mode. Enables the I2C interrupt.

Parameters: uint8 slaveAddress: Right-justified 7-bit slave address (valid range 0 to 127).

uint8 wrData: Pointer to the buffer of the data to be sent.

uint8 cnt: Number of bytes of the buffer to send.

uint8 mode: Transfer mode defines: (1) Whether a Start or Restart condition is generated at
the beginning of the transfer, and (2) Whether the transfer is completed or halted before the
Stop condition is generated on the bus.

Transfer mode, mode constants may be ORed together.

Mode Constants Description

I2C_MODE_COMPLETE_XFER Perform complete transfer from Start to Stop.

I2C_MODE_REPEAT_START Send Repeat Start instead of Start.

I2C_MODE_NO_STOP Execute transfer without a Stop

Return Value: uint8: Error Status. See the I2C_MasterSendStart() function for constants.

Side Effects: None

uint8 I2C_MasterReadBuf(uint8 slaveAddress, uint8 * rdData, uint8 cnt, uint8 mode)

Description: This function automatically reads an entire buffer of data from a slave device. Once this
function initiates the data transfer, the included ISR manages further data transfer in byte by
byte mode. Enables the I2C interrupt.

Parameters: uint8 slaveAddress: Right-justified 7-bit slave address (valid range 0 to 127).

uint8 rdData: Pointer to the buffer in which to put the data from the slave.

uint8 cnt: Number of bytes of the buffer to read.

uint8 mode: Transfer mode defines: (1) Whether a Start or Restart condition is generated at
the beginning of the transfer and (2) Whether the transfer is completed or halted before the
Stop condition is generated on the bus.

Transfer mode, mode constants may be ORed together

Mode Constants Description

I2C_MODE_COMPLETE_XFER Perform complete transfer for Start to Stop.

I2C_MODE_REPEAT_START Send Repeat Start instead of Start.

I2C_MODE_NO_STOP Execute transfer without a Stop

Return Value: uint8: Error Status. See the I2C_MasterSendStart() function for constants.

Side Effects: None

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 23 of 61

uint8 I2C_MasterSendStart(uint8 slaveAddress, uint8 R_nW)

Description: This function generates a Start condition and sends the slave address with the read/write
bit. Disables the I2C interrupt.

Parameters: uint8 slaveAddress: Right-justified 7-bit slave address (valid range 0 to 127).

uint8 R_nW: Set to zero, send write command; set to nonzero, send read command.

Return Value: uint8: Error Status.

Mode Constants Description

I2C_MSTR_NO_ERROR Function completed without error.

I2C_MSTR_BUS_BUSY Bus is busy, Start condition was not generated.

I2C_MSTR_NOT_READY The master is not a valid master on the bus, or a
slave operation is in progress.

I2C_MSTR_ERR_LB_NAK The last byte was NAKed.

I2C_MSTR_ERR_ARB_LOST The master lost arbitration while the Start was
generated. (This status is only valid if multi-master
is enabled.)

I2C_MSTR_ERR_ABORT_START_GEN Start condition generation was aborted because of
the start of slave operation. (This status is only valid
in multi-master-slave mode.)

Side Effects: This function is blocking and does not exit until the byte_complete bit is set in the I2C_CSR
register.

uint8 I2C_MasterSendRestart(uint8 slaveAddress, uint8 R_nW)

Description: This function generates a restart condition and sends the slave address with the read/write
bit.

Parameters: uint8 slaveAddress: Right-justified 7-bit slave address (valid range 0 to 127).

uint8 R_nW: Set to zero, send write command; set to nonzero, send read command.

Return Value: uint8: Error Status. See the I2C_MasterSendStart() function for constants.

Side Effects: This function is blocking and does not exit until the byte_complete bit is set in the I2C_CSR
register.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 24 of 61 Document Number: 001-97376 Rev. *C

uint8 I2C_MasterSendStop(void)

Description: Generates Stop condition on the bus. The NAK is generated before Stop in case of a read
transaction. At least one byte has to be read if a Start or ReStart condition with read
direction was generated before.

This function does nothing if Start or Restart conditions failed before this function was
called.

Parameters: None

Return Value: uint8: Error Status. See the I2C_MasterSendStart() command for constants.

Side Effects: This function is blocking and does not exit until:

Master: This function waits while a stop condition is generated.

Multi-Master, Multi-Master-Slave: This function waits while a stop condition is generated or
arbitrage is lost on the ACK/NAK bit.

uint8 I2C_MasterWriteByte(uint8 theByte)

Description: This function sends one byte to a slave.

A valid Start or Restart condition must be generated before calling this function. This
function does nothing if the Start or Restart conditions failed before this function was called.

Parameters: uint8 theByte: Data byte to send to the slave.

Return Value: uint8: Error Status.

Mode Constants Description

I2C_MSTR_NO_ERROR Function complete without error.

I2C_MSTR_NOT_READY The master is not a valid master on the bus or slave
operation is in progress.

I2C_MSTR_ERR_LB_NAK The last byte was NAKed.

I2C_MSTR_ERR_ARB_LOST The master lost arbitration. (This status is valid only if multi-
master is enabled.)

Side Effects: This function is blocking and does not exit until the byte_complete bit is set in the I2C_CSR
register.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 25 of 61

uint8 I2C_MasterReadByte(uint8 acknNak)

Description: Reads one byte from a slave and generates ACK or prepares to generate NAK. The NAK
will be generated before Stop or ReStart condition by SCB_MasterSendStop() or
SCB_MasterSendRestart() function appropriately.

This function is blocking. It does not return until a byte is received or an error occurs.

A valid Start or Restart condition must be generated before calling this function. This
function does nothing and returns a zero value if the Start or Restart conditions failed before
this function was called.

Parameters: uint32 acknNack: Response to received byte.

Response constants Description

I2C_ACK_DATA Generates ACK.

The master notifies slave that transfer continues.

I2C_NAK_DATA Prepares to generate NAK.

The master will notify slave that transfer is completed.

Return Value: uint8: Byte read from the slave.

Side Effects: This function is blocking and does not exit until the byte_complete bit is set in the I2C_CSR
register

uint8 I2C_MasterGetReadBufSize(void)

Description: This function returns the number of bytes that have been transferred with an
I2C_MasterReadBuf() function.

Parameters: None

Return Value: uint8: Byte count of the transfer. If the transfer is not yet complete, this function returns the
byte count transferred so far.

Side Effects: None

uint8 I2C_MasterGetWriteBufSize(void)

Description: This function returns the number of bytes that have been transferred with an
I2C_MasterWriteBuf() function.

Parameters: None

Return Value: uint8: Byte count of the transfer. If the transfer is not yet complete, this function returns the
byte count transferred so far.

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 26 of 61 Document Number: 001-97376 Rev. *C

void I2C_MasterClearReadBuf (void)

Description: This function resets the read buffer pointer back to the first byte in the buffer.

Parameters: None

Return Value: None

Side Effects: None

void I2C_MasterClearWriteBuf (void)

Description: This function resets the write buffer pointer back to the first byte in the buffer.

Parameters: None

Return Value: None

Side Effects: None

Multi-Master-Slave Functions

Multi-master-slave incorporates slave and multi-master functions.

Global Variables

Knowledge of these variables is not required for normal operations.

Variable Description

I2C_initVar I2C_initVar indicates whether the I2C component has been initialized. The variable is
initialized to 0 and set to 1 the first time I2C_Start() is called. This allows the component
to restart without reinitialization after the first call to the I2C_Start() routine.

If reinitialization of the component is required, then the I2C_Init() function can be called
before the I2C_Start() or I2C_Enable() function.

I2C_slAddress Software address of the I2C slave.

Bootloader Support

The I2C component can be used as a communication component for the Bootloader. Use the
following configuration to support communication protocol from an external system to the
Bootloader:

▪ Mode: Slave

▪ Implementation: Either fixed-function or UDB-based

▪ Data Rate: Must match Host (boot device) data rate.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 27 of 61

▪ Slave Address: Must match Host (boot device) selected slave address.

▪ Address Match: Hardware is preferred but not required

For more information about the Bootloader, refer to the "Bootloader System" section of the
System Reference Guide.

For additional information about I2C communication component implementation, refer to the
Bootloader Protocol Interaction with I2C Communication Component section.

The I2C Component provides a set of API functions for Bootloader use.

Function Description

I2C_CyBtldrCommStart Starts the I2C component and enables its interrupt.

I2C_CyBtldrCommStop Disables the I2C component and disables its interrupt.

I2C_CyBtldrCommReset Sets read and write I2C buffers to the initial state and resets the slave status.

I2C_CyBtldrCommRead Allows the caller to read data from the bootloader host. This function manages polling
to allow a block of data to be completely received from the host device.

I2C_CyBtldrCommWrite Allows the caller to write data to the bootloader host. This function manages polling to
allow a block of data to be completely sent to the host device.

void I2C_CyBtldrCommStart(void)

Description: This function starts the I2C component and enables its interrupt.

Every incoming I2C write transaction is treated as a command for the bootloader.

Every incoming I2C read transaction returns 0xFF until the bootloader provides a response
to the executed command.

Parameters: None

Return Value: None

Side Effects: None

void I2C_CyBtldrCommStop(void)

Description: This function disables the I2C component and disables its interrupt.

Parameters: None

Return Value: None

Side Effects: None

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 28 of 61 Document Number: 001-97376 Rev. *C

void I2C_CyBtldrCommReset(void)

Description: This function sets the read and write I2C buffers to the initial state and resets the slave
status.

Parameters: None

Return Value: None

Side Effects: None

cystatus I2C_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

Description: This function allows the caller to read data from the bootloader host. The function manages
polling to allow a block of data to be completely received from the bootloader host.

Parameters: uint8 pData[]: Pointer to storage for the block of data to be read from the bootloader host

uint16 size: Number of bytes to be read

uint16 *count: Pointer to the variable to write the number of bytes actually read

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information, see the "Return Codes" section of
the System Reference Guide.

Side Effects: None

cystatus I2C_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count,
uint8 timeOut)

Description: This function allows the caller to write data to the bootloader host. The function manages
polling to allow a block of data to be completely sent to the bootloader host.

Parameters: const uint8 pData[]: Pointer to the block of data to be written to the bootloader host

uint16 size: Number of bytes to be written

uint16 *count: Pointer to the variable to write the number of bytes actually written

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information see the "Return Codes" section of the
System Reference Guide.

Side Effects: None

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 29 of 61

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated
by PSoC Creator. Refer to the PSoC Creator Help and Component Author Guide for the more
details.

In order to add code to the macro callback present in the component’s generated source files,
perform the following:

▪ Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will
“uncomment” the function call from the component’s source code.

▪ Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

▪ Write the function implementation (in any user file).

Callback Function [7] Associated Macro Description

I2C_ISR_EntryCallback I2C_ISR_ENTRY_CALLBACK Used at the beginning of the I2C_ISR() interrupt
handler to perform additional application-specific
actions.

I2C_ISR_ExitCallback I2C_ISR_EXIT_CALLBACK Used at the end of the I2C_ISR() interrupt handler
to perform additional application-specific actions.

I2C_WAKEUP_ISR_EntryCall
back

I2C_WAKEUP_ISR_ENTRY_CALLBAC
K

Used at the beginning of the I2C_WAKEUP_ISR()
interrupt handler to perform additional application-
specific actions.

I2C_WAKEUP_ISR_ExitCallb
ack

I2C_WAKEUP_ISR_EXIT_CALLBACK Used at the end of the I2C_WAKEUP_ISR()
interrupt handler to perform additional application-
specific actions.

I2C_TMOUT_ISR_EntryCallb
ack

I2C_TMOUT_ISR_ENTRY_CALLBACK Used at the beginning of the I2C_ISR4() interrupt
handler to perform additional application-specific
actions.

I2C_TMOUT_ISR_ExitCallbac
k

I2C_TMOUT_ISR_EXIT_CALLBACK Used at the end of the I2C_ISR4() interrupt handler
to perform additional application-specific actions.

I2C_SwPrepareReadBuf_Call
back

I2C_SW_PREPARE_READ_BUF_CALL
BACK

Used in the I2C_ISR() interrupt handler to perform
additional application-specific actions.

I2C_SwAddrCompare_EntryC
allback

I2C_SW_ADDR_COMPARE_ENTRY_C
ALLBACK

Used in the I2C_ISR() interrupt handler to perform
additional application-specific actions.

I2C_SwAddrCompare_ExitCal
lback

I2C_SW_ADDR_COMPARE_EXIT_CAL
LBACK

Used in the I2C_ISR() interrupt handler to perform
additional application-specific actions.

I2C_HwPrepareReadBuf_Call
back

I2C_HW_PREPARE_READ_BUF_CALL
BACK

Used in the I2C_ISR() interrupt handler to perform
additional application-specific actions.

7 The callback function name is formed by component function name optionally appended by short explanation
and “Callback” suffix.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 30 of 61 Document Number: 001-97376 Rev. *C

Callback Function [7] Associated Macro Description

I2C_TimeoutReset_Callback I2C_TIMEOUT_RESET_CALLBACK Used in the I2C_TimeoutReset() function to
perform additional application-specific actions.

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

▪ project deviations – deviations that are applicable for all PSoC Creator components

▪ specific deviations – deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The I2C component has the following specific deviations:

MISRA-C:
2004 Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

10.1 R The value of an expression of
integer type shall not be implicitly
converted to a different underlying
type if:

a) it is not a conversion to a wider
integer type of the same
signedness, or

b) the expression is complex, or

c) the expression is not constant
and is a function argument, or

d) the expression is not constant
and is a return expression

The library function memcpy has a generic int
argument for the number of bytes to be
copied.

An unsigned 16-bit integer is passed as an
argument to this function.

This action does not cause any side effects
because the number of bytes to copy is
always less than 256.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 31 of 61

MISRA-C:
2004 Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

11.5 R A cast shall not be performed that
removes any const or volatile
qualification from the type
addressed by a pointer.

The library function memcpy has pointer to
void arguments for the source and
destination.

A pointer to a constant array is passed as the
source argument and the constant
qualification is lost.

The memcpy function implementation never
changes the source and is therefore safe to
use with a constant argument.

17.4 R Array indexing shall be the only
allowed form of pointer arithmetic.

The application allocates buffers and sets
them up for the component providing the
pointer and size. The component uses array
indexing operations to access these buffers.
The buffer size is checked before accessing
the buffers.

This implementation is safe as long as the
correct buffer size is provided by the
application.

19.7 A A function should be used in
preference to a function-like macro.

Deviations with function-like macros to allow
for more efficient code.

The component incorporates the Fixed
Function and UDB implementations. Macros
with arguments are used to support these two
implementations in a flexible way.

This component has the following embedded component: Clock. Refer to the corresponding
component datasheet for information on their MISRA compliance and specific deviations.

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements have been done with associated compiler configured in Release mode with
optimization set for Size. For a specific design the map file generated by the compiler can be
analyzed to determine the memory usage.

Configuration

PSoC 3 (Keil_PK51) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Slave
UDB 1044 16 1196 21

Fixed Function 1259 20 1432 25

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 32 of 61 Document Number: 001-97376 Rev. *C

Configuration

PSoC 3 (Keil_PK51) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Master
UDB 1854 16 2100 20

Fixed Function 1871 20 2084 24

Multi-Master
UDB 2065 16 2348 20

Fixed Function 1983 20 2212 24

Multi-Master-Slave
UDB 2961 28 3268 37

Fixed Function 2854 32 3152 41

Functional Description

This component supports I2C slave, master, multi-master, and multi-master-slave configurations.
The following sections provide an overview of how to use the slave, master, and multi-master
components.

This component requires that you enable global interrupts because the I2C hardware is interrupt
driven. Although this component requires interrupts, you do not need to add any code to the ISR
(interrupt service routine). The component services all interrupts (data transfers) independent of
your code. The memory buffers allocated for this interface look like simple dual-port memory
between your application and the I2C master/slave.

Slave Operation

The slave interface consists of two buffers in memory, one for data written to the slave by a
master and a second buffer for data read by a master from the slave. Remember that reads and
writes are from the perspective of the I2C master. The I2C slave read and write buffers are set by
the initialization commands below. These commands do not allocate memory, but instead copy
the array pointer and size to the internal component variables. You must instantiate the arrays
used for the buffers because they are not automatically generated by the component. You can
use the same buffer for both read and write buffers, but you must be careful to manage the data
properly.

void I2C_SlaveInitReadBuf(uint8 * rdBuf, uint8 bufSize)

void I2C_SlaveInitWriteBuf(uint8 * wrBuf, uint8 bufSize)

Using the functions above sets a pointer and byte count for the read and write buffers. The
bufSize for these functions may be less than or equal to the actual array size, but it should never
be larger than the available memory pointed to by the rdBuf or wrBuf pointers.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 33 of 61

Figure 2. Slave Buffer Structure

M e m o ry

0 x 0 0 0 0

0 x 1 2 3 0

0 x F F F F

0 x 1 2 4 3

0 x 0 0

0 x 0 1

0 x 0 2

0 x 0 3

0 x 0 4

0 x 0 5

0 x 0 6

0 x 0 7

0 x 0 8

0 x 0 9

I2 C R e a d

B u ffe r

u in t8 rd B u f[1 0] ;

I2 C _ S la v e In itR e a d B u f (rd B u f, 1 0) ;

0 x 1 2 3 7

0 x 1 2 3 A

0 x 0 0

0 x 0 1

0 x 0 2

0 x 0 3

0 x 0 4

0 x 0 5

0 x 0 6

0 x 0 7

I2 C W r ite

 B u ffe r

u in t8 w rB u f [8] ;

I2 C _ S la v e In itW r ite B u f (w rB u f, 8) ;

In d e x

In d e x

When the I2C_SlaveInitReadBuf() or I2C_SlaveInitWriteBuf() functions are called, the internal
index is set to the first value in the array pointed to by rdBuf and wrBuf, respectively. As the I2C
master reads or writes the bytes, the index is incremented until the offset is one less than the
byteCount. At any time, the number of bytes transferred can be queried by calling either
I2C_SlaveGetReadBufSize() or I2C_SlaveGetWriteBufSize() for the read and write buffers,
respectively. Reading or writing more bytes than are in the buffers causes an overflow error. The
error is set in the slave status byte and can be read with the I2C_SlaveStatus() API.

To reset the index back to the beginning of the array, use the following commands.

void I2C_SlaveClearReadBuf(void)

void I2C_SlaveClearWriteBuf(void)

This resets the index back to zero. The next byte the I2C master reads or writes to is the first byte
in the array. Before using these clear buffer commands, the data in the arrays should be read or
updated.

Multiple reads or writes by the I2C master continue to increment the array index until the clear
buffer commands are used or the array index tries to grow beyond the array size. Figure 3 shows
an example where an I2C master has executed two write transactions. The first write was four
bytes and the second write was six bytes. The sixth byte in the second transaction was ACKed
by the slave because buffer has a room to store byte. If the master tried to write a seventh byte
for the second transaction or started to write more bytes with a third transaction, each byte would
be NAKed and discarded until the buffer is reset.

Using the I2C_SlaveClearWriteBuf() function after the first transaction resets the index back to
zero and causes the second transaction to overwrite the data from the first transaction. Make

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 34 of 61 Document Number: 001-97376 Rev. *C

sure data is not lost by overflowing the buffer. The data in the buffer should be processed by the
slave before resetting the buffer index.

Figure 3. System Memory

1

2

3

4

5

6

7

8

9

0x0000

0x1230

0 Trans1 Byte1

Trans1 Byte2

Trans1 Byte3

Trans1 Byte4

Trans2 Byte1

Trans2 Byte2

Trans2 Byte3

Trans2 Byte4

Trans2 Byte5

Trans2 Byte6

Transaction 1

Transaction 2

Index

Read or Write

Buffer

Visible by

I
2
C Master

0x1239

0xFFFF

System Memory
uint8 wrBuf[10];

I2C_SlaveInitWriteBuf((uint8 *) wrBuf, 10);

Both the read and write buffers have four status bits to signal transfer complete, transfer in
progress, and buffer overflow. Starting a transfer sets the busy flag. When the transfer is
complete, the transfer complete flag is set and the busy flag is cleared. If a second transfer is
started, both the busy and transfer complete flags can be set at the same time. The following
table shows read and write status flags.

Slave Status Constants Value Description

I2C_SSTAT_RD_CMPLT 0x01 Slave read transfer complete

I2C_SSTAT_RD_BUSY 0x02 Slave read transfer in progress (busy)

I2C_SSTAT_RD_OVFL 0x04 Master attempted to read more bytes than are in the buffer

I2C_SSTAT_WR_CMPLT 0x10 Slave write transfer complete

I2C_SSTAT_WR_BUSY 0x20 Slave write transfer in progress (busy)

I2C_SSTAT_WR_OVFL 0x40 Master attempted to write past the end of the buffer

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 35 of 61

The following code example initializes the write buffer then waits for a transfer to complete. After
the transfer is complete, the data is copied into a working array. In many applications, the data
does not have to be copied to a second location, but instead can be processed in the original
buffer. You could create an almost identical read buffer example by replacing the write functions
and constants with read functions and constants. Processing the data may mean new data is
transferred into the slave buffer instead of out.

uint8 wrBuf[10];

uint8 userArray[10];

uint8 byteCnt;

/* Initialize write buffer before call I2C_Start */

I2C_SlaveInitWriteBuf((uint8 *) wrBuf, 10);

/* Start I2C Slave operation */

I2C_Start();

/* Wait for I2C master to complete a write */

for(;;) /* loop forever */

{

 /* Wait for I2C master to complete a write */

 if(0u != (I2C_SlaveStatus() & I2C_SSTAT_WR_CMPLT))

 {

 byteCnt = I2C_SlaveGetWriteBufSize();

 I2C_SlaveClearWriteStatus();

 for(i=0; i < byteCnt; i++)

 {

 userArray[i] = wrBuf[i]; /* Transfer data */

 }

 I2C_SlaveClearWriteBuf();

 }

}

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 36 of 61 Document Number: 001-97376 Rev. *C

Master/Multi-Master Operation

Master and multi-master [8] [9] operation are basically the same, with two exceptions. When
operating in multi-master mode, the program should always check the return status for a Start
transaction. Another multi-master may already be communicating with another slave. In this
case, the program must wait until that communication is completed and the bus becomes free.
The program can wait in two ways: generate a Start transaction until the return status indicates
success, or check the bus state until the bus becomes free and then generate a Start
transaction. The multi-master transaction can be queued if another multi-master generates the
Start faster. In this case, the error condition is not returned and a multi-master transaction is
generated. This transaction is issued as soon as the bus becomes free.

The second difference is that, in multi-master mode, two masters can start at the same time. If
this happens, one of the two masters loses arbitration.

▪ Automatic multi-master transaction: The component automatically checks for this
condition and responds with an error if arbitration was lost. The multi-master transaction is
considered complete (appropriate completion status flags are set) when arbitration is lost.

▪ Manual multi-master transaction: You must check for the return condition after each byte
is transferred.

There are two options when operating the I2C master: manual and automatic. In the automatic
mode, a buffer is created to hold the entire transfer. In the case of a write operation, the buffer is
prefilled with the data to be sent. If data is to be read from the slave, you need to allocate a
buffer at least the size of the packet. To write an array of bytes to a slave in automatic mode, use
the following function.

uint8 I2C_MasterWriteBuf(uint8 slaveAddress, uint8 * wrData, uint8 cnt, uint8

mode)

The slaveAddress variable is a right-justified 7-bit slave address of 0 to 127. The component API
automatically appends the write flag to the LSb of the address byte. The second parameter,
xferData, points to the array of data to transfer. The cnt parameter is the number of bytes to
transfer. The last parameter, mode, determines how the transfer starts and stops. A transaction
can begin with a Restart instead of a Start, or halt before the Stop sequence. These options
allow back-to-back transfers where the last transfer does not send a Stop and the next transfer
issues a Restart instead of a Start.

8 In fixed-function implementation for PSoC 5LP in master or multi-master mode, if the software sets the Stop
condition immediately after the Start condition, the module generates the Stop condition. This happens after the
address field (sends 0xFF if data write), and the clock line remains low. To avoid this condition, do not set the
Stop condition immediately after Start; transfer at least a byte and set the Stop condition after NAK or ACK.

9 Fixed-function implementation does not support undefined bus conditions. Avoid these conditions, or use the
UDB-based implementation instead.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 37 of 61

A read operation is almost identical to the write operation. It uses the same parameters with the
same constants.

uint8 I2C_MasterReadBuf(uint8 slaveAddress, uint8 * rdData, uint8 cnt, uint8

mode);

Both of these functions return status. See the status table for the I2C_MasterStatus() function
return value. Because the read and write transfers complete in the background during the I2C
interrupt code, you can use the I2C_MasterStatus() function to determine when the transfer is
complete. A code snippet that shows a typical write to a slave follows.

I2C_MasterClearStatus(); /* Clear any previous status */

I2C_MasterWriteBuf(0x08, (uint8 *) wrData, 10, I2C_MODE_COMPLETE_XFER);

for(;;)

{

 if(0u != (I2C_MasterStatus() & I2C_MSTAT_WR_CMPLT))

 {

 /* Transfer complete. Check Master status to make sure that transfer

 completed without errors. */

 break;

 }

}

The I2C master can also be operated manually. In this mode, each part of the write transaction is
performed with individual commands.

status = I2C_MasterSendStart(0x08, I2C_WRITE_XFER_MODE);

if(I2C_MSTR_NO_ERROR == status) /* Check if transfer completed without errors */

{

 /* Send array of 5 bytes */

 for(i=0; i<5; i++)

 {

 status = I2C_MasterWriteByte(userArray[i]);

 if(status != I2C_MSTR_NO_ERROR)

 {

 break;

 }

 }

}

I2C_MasterSendStop(); /* Send Stop */

A manual read transaction is similar to the write transaction except the last byte should be
NAKed. The following example shows a typical manual read transaction.

status = I2C_MasterSendStart(0x08, I2C_READ_XFER_MODE);

if(I2C_MSTR_NO_ERROR == status) /* Check if transfer completed without errors */

{

 /* Read array of 5 bytes */

 for(i=0; i<5; i++)

 {

 if(i < 4)

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 38 of 61 Document Number: 001-97376 Rev. *C

 {

 userArray[i] = I2C_MasterReadByte(I2C_ACK_DATA);

 }

 else

 {

 userArray[i] = I2C_MasterReadByte(I2C_NAK_DATA);

 }

 }

}

I2C_MasterSendStop(); /* Send Stop */

Multi-Master-Slave Mode Operation

Both multi-master and slave work in this mode. The component can be addressed as a slave,
but firmware can also initiate master mode transfers. In this mode, when a master loses
arbitration during an address byte, the hardware reverts to slave mode and the received byte
generates a slave address interrupt.

For master and slave operation examples, see the Slave Operation and Master/Multi-Master
Operation sections.

Arbitrage on address byte limitations with hardware address match enabled: When a
master loses arbitration during an address byte, the slave address interrupt is generated only if
the slave is addressed. In other cases, the lost arbitrage status is lost by interrupt-based
functions. The software address detect eliminates this possibility, but excludes the Wakeup on
Hardware Address Match feature.

The manual function I2C_MasterSendStart() provides correct status information in the case just
described.

Start of Multi-Master-Slave Transfer

When using multi-master-slave, the slave can be addressed at any time. The multi-master must
take time to prepare to generate a Start condition when the bus is free. During this time, the
slave could be addressed and, if so, the multi-master transaction is lost and the slave operation
proceeds. Be careful not to break the slave operation; the I2C interrupt must be disabled before
generating a Start condition to prevent the transaction from passing the address stage. This
action allows you to abort a multi-master transaction and start a slave operation correctly. The
following cases are possible when disabling the I2C interrupt:

▪ The bus is busy (slave operation is in progress or other traffic is on the bus) before Start
generation. The multi-master does not try to generate a Start condition. Slave operation
proceeds when the I2C interrupt is enabled. The I2C_MasterWriteBuf(),
I2C_MasterReadBuf(), or I2C_MasterSendStart() call returns the status
I2C_MSTR_BUS_BUSY.

▪ The bus is free before Start generation. The multi-master generates a Start condition on
the bus and proceeds with operation when the I2C interrupt is enabled. The

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 39 of 61

I2C_MasterWriteBuf(), I2C_MasterReadBuf(), or I2C_MasterSendStart() call returns the
status I2C_MSTR_NO_ERROR.

▪ The bus is free before Start generation. The multi-master tries to generate a Start but
another multi-master addresses the slave before this and the bus becomes busy. The
Start condition generation is queued. The slave operation stops at the address stage
because of a disabled I2C interrupt. When the I2C interrupt is enabled, the multi-master
transaction is aborted from the queue and the slave operation proceeds. The
I2C_MasterWriteBuf() or I2C_MasterReadBuf() call does not notice this and returns
I2C_MSTR_NO_ERROR. The I2C_MasterStatus() returns I2C_MSTAT_WR_CMPLT or
I2C_MSTAT_RD_CMPLT with I2C_MSTAT_ERR_XFER (all other error condition bits are
cleared) after the multi-master transaction is aborted. The I2C_MasterSendStart() call
returns the error status I2C_MSTR_ERR_ABORT_START_GEN.

Interrupt Function Operation

I2C_MasterWriteBuf();

I2C_MasterReadBuf();

I2C_MasterClearStatus(); /* Clear any previous status */

I2C_DisableInt(); /* Disable interrupt */

status = I2C_MasterWriteBuf(0x08, (uint8 *) wrData, 10, I2C_MODE_COMPLETE_XFER);

/* Try to generate, start. The disabled I2C interrupt halt the transaction on

address stage in case of Slave addressed or Master generates start condition */

I2C_EnableInt(); /* Enable interrupt and proceed Master or Slave transaction */

for(;;)

{

 if(0u != (I2C_MasterStatus() & I2C_MSTAT_WR_CMPLT))

 {

 /* Transfer complete. Check Master status to make sure that transfer

 completed without errors. */

 break;

 }

}

if (0u != (I2C_MasterStatus() & I2C_MSTAT_ERR_XFER))

{

 /* Error occurred while transfer, clean up Master status and

 retry the transfer */

}

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 40 of 61 Document Number: 001-97376 Rev. *C

Manual Function Operation

Manual multi-master operation assumes that the I2C interrupt is disabled, but it is best to take the
following precaution:

I2C_DisableInt(); /* Disable interrupt */

/* Try to generate start condition */

status = I2C_MasterSendStart(0x08, I2C_WRITE_XFER_MODE);

/* Check if start generation completed without errors */

if (I2C_MSTR_NO_ERROR ==status)

{

 /* Proceed the write operation */

 /* Send array of 5 bytes */

 for (i=0; i<5; i++)

 {

 status = I2C_MasterWriteByte(userArray[i]);

 if (status != I2C_MSTR_NO_ERROR)

 {

 break;

 }

 }

 I2C_MasterSendStop(); /* Send Stop */

}

I2C_EnableInt(); /* Enable interrupt, if it was enabled before */

Wakeup on Hardware Address Match

The wakeup from sleep on I2C address match event is possible if the following conditions are
met:

▪ The I2C slave is enabled. Slave or multi-master-slave mode is selected.

▪ I2C Hardware address detection is selected.

▪ The SIO pair is connected to SCL and SDA and the proper pair is selected in the
customizer: I2C0 – SCL P12[4], SDA P12[5] and I2C1 – SCL P12[0], SDA P12[1].

The I2C component customizer controls these conditions, except correct pin assignments.

How it Works

The I2C block responds to transactions on the I2C bus during sleep mode. The I2C wakes the
system if the incoming address matches with the slave address. Once the address matches, a
wakeup interrupt is asserted to wake up the system and SCL is pulled low. The ACK is sent out
after the system wakes up and the CPU determines the next action in the transaction.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 41 of 61

Wakeup and Clock Stretching

The I2C slave stretches the clock while exiting sleep mode. All clocks in the system must be
restored before continuing the I2C transaction after wakeup. The I2C interrupt remains enabled
but interrupt handler is changed before going to sleep. Wakeup on address match triggers I2C
interrupt and I2C wakeup flag is set to notify that. Call I2C_Wakeup() function changes interrupt
handler to regular I2C and generates interrupt based on I2C wakeup flag to process in-coming
transaction. The SCL line remains low after wakeup until I2C_Wake() is called.

Sample code:

I2C_Sleep(); /* Prepare I2C to be able wake up from Sleep mode */

CyPmSaveClocks(); /* Save clocks settings */

CyPmSleep(PM_SLEEP_TIME_NONE, PM_SLEEP_SRC_I2C);

CyPmRestoreClocks(); /* Restore clocks */

I2C_Wakeup(); /* Retuns I2C for operation in Active mode */

…

Figure 4. Wakeup of Address Match

AddressS Data P

Wakeup

ISR

A

Restore clocks

CyPmRestoreClocks()

Clock streching A

Process

address

R

I2C_Wakeup()

handle I
2
C

interrupt

Sleep while address doesn’t

match

Transaction

or bus Idle

Bootloader Protocol Interaction with I2C Communication Component

The bootloader protocol is implemented as command (write transaction) and response (read
transaction).

The time between the host issuing the command and the bootloader sending back the response
is the command execution time. The I2C communication component for the bootloader is
designed in this way: when the host asks for a response, and the bootloader still executes a
command, 0xFF is returned.

Startup: The I2C bootloader communication component expects to receive the command and
does not yet have a valid response. All read transactions from the host return 0xFF. All write
transactions are treated as commands.

Bootloader process: The host is issued the command with a single write transaction and starts
polling for a response. The I2C communication component answers with 0xFF until a valid
response is passed by the bootloader. After receiving 0x01, the host must perform another read
to get the remaining N – 1 bytes of the response. After both reads are complete, the results are
combined to form the full response packet.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 42 of 61 Document Number: 001-97376 Rev. *C

Command from Host Command Execution time Response with Result

Host polling for response, but read 0xFF

because there is no valid response yet.

CyBtldrCommRead CyBtldrCommWrite

Read 1st byte

of response

Read N-1 bytes

of response

Tcom_ex Tresp_set

The host must execute polling by reading one byte; reading more bytes could corrupt the
response. For example, in the case of 0xFF 0x01 0x03 (two bytes of response were read,
instead of one), the next read of the full response returns two invalid bytes, because these bytes
were already read (0x01 and 0x03).

How to avoid polling: You should measure the command execution time (Tcom_ex) plus the
response setup time (Tresp_set) according to the system settings (CPU speed, compiler,
compiler optimization level). The host must ask for the response after this time. The command
execution time changes across the commands, so you should choose the greater time.

Clock stretching while polling: The I2C communication component requires that interrupts be
enabled while in operation. The Command Program Row (0x39), which writes one row of flash
data to the device, requires interrupts to be disabled. Clock stretching occurs if the address is
accepted by the I2C communication component while interrupts are disabled.

AddressS 0xFF P

ISR

address

ISR

Byte complete

Disable

interrupts

A

Command 0x39 execution

Enable

interrupts

Clock streching A

Process

address

R

How to avoid clock stretching: To avoid clock stretching, measure the Command Program
Row (0x39) execution time (Tcom_ex) according to the system settings (CPU speed, compiler,
and compiler optimization level). The host must ask for a response after this time.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 43 of 61

Internal I2C Bus Multiplexing

Selecting the External OE buffer option allows implementing internal I2C bus multiplexing. The
tri-state buffers inside component are removed and the bidirectional scl and sda terminals are
replaced with inputs terminals sda_i and scl_i and outputs terminals sda_o and scl_o.

Figure 5 shows the configuration of input and output signals using a bidirectional pin (left) and by
using a digital input/output pin (right).

The left figure shows the connection of input and output signals using a tri-state buffer
(annotated for illustrative purposes) which can be implemented using a bidirectional pin. The pin
configuration is provided below the connection image. The same connection must be established
for SCL and SDA pins.

Alternatively the same connection can use hardware digital input and output terminals of the pin.
The OE signal is tied to logic ‘1’ inside the pin to allow the output signal to drive the pin state.
This alternative connection will be used in the examples presented in this section.

The operation of the connection is as follows:

▪ The scl_i and sda_i signals are each connected to yfb input to sense the bus. This allows
receiving the data as well as sense the actual state of the bus. It is required to check if the
level which is driven really corresponds to the actual level on the bus. This is important for
detection of clock stretching on the bus or lost arbitration by the master.

▪ The scl_o and sda_o are connected to x output to drive the bus. The output enable of the
tri-state buffer is connected to logic ‘1’ to not impact the output. The drive mode “Open
Drain, drives low” of the bidirectional pin provides the desired output behavior. Logic low
drives the pin low whereas logic high level results in High-Z state on the pin. Then the
pull-up resistors on the I2C bus tie level on the pin high when the output state is High-Z.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 44 of 61 Document Number: 001-97376 Rev. *C

Figure 5. Input (sda_i / scl_i) and output (sda_o / scl_o) signals connection to the pin

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 45 of 61

Figure 6 shows an example of 2:1 I2C bus multiplexing. It can easily be extended to support N:1
muxes. The de-multiplexers are used to select which I2C bus scl_o and sda_o will drive the bus.
The multiplexers are used to select which I2C bus scl_i and sda_i will sense. The same idea can
be used to establish connection to multiple downstream I2C buses. The de-multiplexer assigns
all inactive signals to logic ‘0’ that cause lockup of inactive buses. To prevent this from occurring
the inactive pins output drivers must be disabled.

Figure 6. I2C Bus Multiplexing inside PSoC

BusSelect

I2C

sda_i

scl_i

sda_o

scl_o

I2
C

 b
u

s
 1

I2
C

 b
u

s
 0

SDA muxes

SCL muxes

PSoC 3/5LP

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 46 of 61 Document Number: 001-97376 Rev. *C

Figure 7 shows the PSoC Creator schematic which implements 2:1 I2C bus multiplexing as
described previously. The 8-wire bus is used for signal connection from the I2C component to the
pins. The bus signals with even index numbers are used for I2C bus 0 control and signals with
odd index numbers are used for I2C bus 1. The following function is an example of bus switching
(the drive mode of the pins connected to the inactive bus is changed to High-Z digital to not
cause lockup).

#define I2C_BUS0_ACTIVE (0u)

#define I2C_BUS1_ACTIVE (1u)

void I2CBusSwtich(uint8 activeBus)

{

 switch(activeBus)

 {

 case I2C_BUS0_ACTIVE:

 /* Set drive mode to Digital High-Z to not imapct BUS 1 */

 SDA1_SetDriveMode(PIN_DM_DIG_HIZ);

 SCL1_SetDriveMode(PIN_DM_DIG_HIZ);

 /* Enable BUS 0 to drive the bus */

 BusSelect_Write(I2C_BUS0_ACTIVE);

 /* Set drive mode to Open Drain Drives Low to drive BUS 0 */

 SDA0_SetDriveMode(PIN_DM_OD_LO);

 SCL0_SetDriveMode(PIN_DM_OD_LO);

 break;

 case I2C_BUS1_ACTIVE:

 /* Set drive mode to Digital High-Z to not imapct BUS 1 */

 SDA0_SetDriveMode(PIN_DM_DIG_HIZ);

 SCL0_SetDriveMode(PIN_DM_DIG_HIZ);

 /* Enable BUS 1 to drive the bus */

 BusSelect_Write(I2C_BUS1_ACTIVE);

 /* Set drive mode to Open Drain Drives Low to drive BUS 0 */

 SDA1_SetDriveMode(PIN_DM_OD_LO);

 SCL1_SetDriveMode(PIN_DM_OD_LO);

 break;

 default:

 /* Do nothing: incorrect bus index */

 break;

 }

}

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 47 of 61

Figure 7. I2C Bus Multiplexing inside PSoC (PSoC Creator schematic)

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 48 of 61 Document Number: 001-97376 Rev. *C

Figure 8 shows the PSoC Creator schematic which implements sharing of single I2C bus with
two I2C components inside PSoC. It can be extended to support multiple components to share
the same bus. The I2C1 and I2C2 components sense the same inputs and they outputs are
ANDed together to drive the bus.

Figure 8. I2C Bus Sharing inside PSoC (PSoC Creator schematic)

Interrupt Service Routine

The interrupt service routine is used by the component code. Do not change it.

The following user sections are provided for slave operations in the I2C_INT.c file:

▪ Custom includes and definitions

▪ Additional address compare

▪ Prepare read buffer

There are no user sections provided for master operations.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 49 of 61

Registers

The functions provided support the common run-time functions required for most applications.
The following register references provide brief descriptions for the advanced user. The I2C_Data
register may be used to write data directly to the bus without using the API. This can be useful
for either CPU or DMA use.

The registers available to each of the configurations of the I2C component are grouped according
to the implementation as fixed function or UDB.

Fixed-Function Master/Slave Registers

Refer to the device Technical Reference Manual (TRM) for information about I2C Fixed Function
block registers.

UDB Master

The UDB register definitions are derived from the Verilog implementation of I2C. See the specific
mode implementation Verilog for more information about these registers’ definitions.

I2C_CFG

The control register is available in the UDB implementation for run-time control of the hardware

Bits 7 6 5 4 3 2 1 0

Value start_gen stop_gen restart_gen ack RSVD transmit en_master RSVD

▪ start_gen: Set to 1 to generate a Start condition on the bus. This bit must be cleared by
firmware before initiating the next transaction.

▪ stop_gen: Set to 1 to generate a Stop condition on the bus. This bit must be cleared by
firmware before initiating the next transaction.

▪ restart_gen: Set to 1 to generate a Restart condition on the bus. This bit must be cleared
by firmware after a Restart condition is generated.

▪ ack: Set to 1 to NAK the next read byte. Clear to ACK next read byte. This bit must be
cleared by firmware between bytes.

▪ transmit: Set to 1 to set the current mode to transmit or clear to 0 to receive a byte of data.
This bit must be cleared by firmware before starting the next transmit or receive
transaction.

▪ en_master: Set to 1 to enable the master functionality.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 50 of 61 Document Number: 001-97376 Rev. *C

I2C_CSR

The status register is available in the UDB implementation for run-time status feedback from the
hardware. The status data is registered at the input clock edge of the counter for all bits
configured with mode = 1. These bits are sticky and are cleared on a read of the status register.
All other bits are configured as mode = 0 read directly from the inputs to the status register. They
are not sticky and therefore not cleared on read. All bits configured as mode = 1 are indicated
with an asterisk (*) in the following definitions.

Bits 7 6 5 4 3 2 1 0

Value RSVD lost_arb* stop_status* bus_busy address master_mode lrb byte_complete

▪ lost_arb*: If set, indicates arbitration was lost (multi-master and multi-master-slave
modes).

▪ stop_status*: If set, indicates a Stop condition was detected on the bus.

▪ bus_busy: If set, indicates the bus is busy. Data is currently being transmitted or received.

▪ address: Address detection. If set, indicates that an address byte was sent.

▪ master_mode: Indicates that a valid Start condition was generated and a hardware device
is operating as bus master.

▪ lbr: Last Received Bit. Indicates the state of the last received bit, which is the ACK/NAK
received for the last byte transmitted. Cleared = ACK and set = NAK.

▪ byte_complete: Transmit or receive status since the last read of this register. In Transmit
mode this bit indicates that eight bits of data plus ACK/NAK have been transmitted since
the last read. In Receive mode this bit indicates that eight bits of data have been received
since the last read of this register.

I2C_INT_MASK

The interrupt mask register is available in the UDB implementation to specify which status bits
are enabled as interrupt sources. Any of the status register bits can be enabled as an interrupt
source with a one-to-one bit correlation to the status register’s bit-field definitions in I2C_CSR.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 51 of 61

I2C_DATA

The data register is available in the UDB implementation block for run-time transmission and
receipt of data.

Bits 7 6 5 4 3 2 1 0

Value data

▪ data: In transmit mode this register is written with the data to transmit. In receive mode
this register is read upon status receipt of byte_complete.

I2C_GO

The Go register forces the data in the data register to be transmitted when the master transmits.
The Go register forces the data to be received in the data register when the master receives.
Any write to this register forces this action, no matter which value is written.

UDB Slave

The UDB register definitions are derived from the Verilog implementation of I2C. See the specific
mode implementation Verilog for more information about these registers’ definitions.

I2C_CFG

The control register is available in the UDB implementation for run-time control of the hardware

Bits 7 6 5 4 3 2 1 0

Value RSVD RSVD RSVD nak any_address transmit RSVD en_slave

▪ nak: If set, used to NAK the last byte received. This bit must be cleared by firmware
between bytes.

▪ any_address: If set, used to enable the device to respond any device addresses it
receives rather than just the single address provided in I2C_ADDRESS.

▪ transmit: Used to set the mode to transmit or receive data. This bit must be cleared by
firmware between bytes. Set = transmit and cleared = receive.

▪ en_slave: Set to 1 to enable the slave functionality.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 52 of 61 Document Number: 001-97376 Rev. *C

I2C_CSR

The status register is available in the UDB implementation for run-time status feedback from the
hardware. The status data is registered at the input clock edge of the counter for all bits
configured with mode = 1. These bits are sticky and are cleared on a read of the status register.
All other bits are configured as mode = 0 and read directly from the inputs to the status register.
They are not sticky and therefore not cleared on read. All bits configured as mode = 1 are
indicated with an asterisk (*) in the definitions listed below.

Bits 7 6 5 4 3 2 1 0

Value RSVD RSVD stop* RSVD address RSVD lrb byte_complete

▪ stop*: If set, indicates a Stop condition was detected on the bus.

▪ address: Address detection. If set, indicates that an address byte was received.

▪ lbr: Last Received Bit. Indicates the state of the last received bit, which is the ACK/NAK
received for the last byte transmitted. Cleared = ACK and set = NAK.

▪ byte_complete: Transmit or receive status since the last read of this register. In transmit
mode this bit indicates that eight bits of data plus ACK/NAK have been transmitted since
the last read. In Receive mode this bit indicates that eight bits of data have been received
since the last read of this register.

I2C_INT_MASK

The interrupt mask register is available in the UDB implementation to specify which status bits
are enabled as interrupt sources. Any of the status register bits can be enabled as an interrupt
source with a one-to-one bit correlation to the status register bit-field definitions in the I2C_CSR
register. Two interrupt sources are used during operation: byte_complete and stop.

I2C_ADDRESS

The slave address register is available in the UDB implementation to configure the slave device
address for hardware comparison mode.

Bits 7 6 5 4 3 2 1 0

Value RSVD slave_address

▪ slave_address: Used to define the 7-bit slave address for hardware address comparison
mode

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 53 of 61

I2C_DATA

The data register is available in the UDB implementation block for run-time transmission and
receipt of data.

Bits 7 6 5 4 3 2 1 0

Value data

▪ data: In transmit mode this register is written with the data to transmit. In receive mode
this register is read upon status receipt of byte_complete.

I2C_GO

The Go register forces data in the data register to be transmitted when master transmits. The Go
register forces the data register to receive data when the master receives. Any write to this
register forces this action, no matter which value is written.

Component Debug Window

PSoC Creator allows you to view debug information about components in your design. Each
component window lists the memory and registers for the instance. For detailed hardware
registers descriptions, refer to the appropriate device Technical Reference Manual (TRM). For
detailed UDB registers descriptions used in the component, refer to the Registers section of this
datasheet.

To open the Component Debug window:

1. Make sure the debugger is running or in break mode.

2. Choose Windows > Components… from the Debug menu.

3. In the Component Window Selector dialog, select the component instances to view and
click OK.

The selected Component Debug window(s) will open within the debugger framework. Refer to
the "Component Debug Window" topic in the PSoC Creator Help for more information.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 54 of 61 Document Number: 001-97376 Rev. *C

Resources

The fixed I2C block and one interrupt are used for the fixed-function implementation.

The UDB version of the component uses the following resources:

Configuration

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

DMA
Channels

Interrupts

Slave 1 25 1 2 – 1

Master 2 33 1 1 – 1

Multi-Master 2 36 1 1 – 1

Multi-Master-Slave 2 65 1 2 – 1

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics (FF Implementation)

Parameter Description Conditions Min Typ Max Units

 Block current consumption Enabled, configured for 100 kbps – – 250 μA

Enabled, configured for 400 kbps – – 260 μA

Wake from sleep mode – – 30 μA

DC Characteristics (UDB Implementation)

Parameter Description Min Typ[10] Max Unit[11]

IDD(Slave) Component current
consumption (Slave)

Standard mode – 200 – µA

Fast mode – 290 – µA

Fast mode plus – 335 – µA

IDD(Master) Component current
consumption (Master)

Standard mode – 210 – µA

Fast mode – 305 – µA

10 Device IO and clock distribution current not included. The values are at 25 °C.

11 Current consumption is specified with respect to the incoming component clock.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 55 of 61

Parameter Description Min Typ[10] Max Unit[11]

Fast mode plus – 465 – µA

IDD(Multi-Master) Component current
consumption (Multi-Master)

Standard mode – 215 – µA

Fast mode – 320 – µA

Fast mode plus – 515 – µA

IDD(Multi-Master-

Slave)
Component
current
consumption
(Multi-Master-
Slave)

Slave
operation

Standard mode – 200 – µA

Fast mode – 290 – µA

Fast mode plus – 335 – µA

Multi-Master
operation

Standard mode – 215 – µA

Fast mode – 320 – µA

Fast mode plus – 515 – µA

AC Characteristics (FF Implementation)

Parameter Description Conditions Min Typ Max Unit

 Bit rate -- -- 1 Mbps

AC Characteristics (UDB Implementation)

Parameter Description Min Typ Max Unit

fSCL SCL clock frequency –

–

–

–

–

–

100

400

1000

kHz

fCLOCK Component input clock frequency − 16 × fSCL − kHz

tRESET Reset pulse width − 2 − tCY_clock
[12]

tLOW Low period of the SCL clock 4.7

1.3

0.5

–

–

–

−

–

–

μs

tHIGH High period of the SCL clock 4.0

0.6

0.26

–

–

–

−

–

–

μs

12 tCY_clock = 1/fCLOCK. This is the cycle time of one clock period.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 56 of 61 Document Number: 001-97376 Rev. *C

Parameter Description Min Typ Max Unit

tHD_STA Hold time (repeated) start condition 4.0

0.6

0.26

–

–

–

−

–

–

μs

tSU_STA Setup time for a repeated start condition 4.7

0.6

0.26

–

–

–

−

–

–

μs

tHD_DAT Data hold time 5.0

–

–

–

–

–

−

–

–

μs

tSU_DAT
[13] Data setup time 250

100

50

–

–

–

−

–

–

ns

tSU_STO Setup time for stop condition 4.0

0.6

0.26

–

–

–

−

–

–

μs

tBUF Bus free time between a stop and start condition 4.7

1.3

0.5

–

–

–

−

–

–

μs

Figure 9. Data Transition Timing Diagram

tSU_STOtSU_STAtHD_DATtHD_STA

SCL

SDA

tLOW tSU_DATtHIGH

SRS P

tBUF

S

tHD_STA

13 Refer to component errata section Cypress ID 195462.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 57 of 61

Component Errata

This section lists known problems with the component.

Cypress
ID

Component
Version Problem Workaround

127428 All The I2C Multi-Master-Slave implemented
on UDBs fails to operate as master when
Address decode is Software.

Open the Configure dialog General tab
and change Implementation to Fixed
function or Address decode to Hardware.

195462 All The I2C slave control logic implemented on
UDBs releases SCL and SDA lines
simultaneously after SCL line has been
stretched by the slave. As a result, this can
cause violation of tSU;DAT parameter and
the master samples current SDA line state
wrong. This typically occurs when the
slave generates ACK to the address or
data (master writes).

There is no workaround. However, the
master and slave can communicate
successfully because SCL line raises
high with RC delay provided by I2C bus.
This delay can prove enough setup time
for the master to sample current SDA line
state.

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

3.50.c Minor datasheet edits.

3.50.b Datasheet update. Added a note about threshold selection for I2C pins.

3.50.a Datasheet update. Added Macro Callbacks section.

3.50 Addressed an issue where the
I2C_MasterSendStop() function in v3.40 of
the component never returns if arbitration is
lost when I2C multi-master executes read
transaction.

This issue is resolved in v3.50.

Addressed an issue where the I2C master
(UDB-based) manual functions can never
return if they are interrupted by an ISR.

This issue is resolved in v3.50.

3.40 Changed execution flow in the
I2C_MasterWriteBuf() and
I2C_MasterReadBuf() functions to do all
preparation for transaction execution before
starting it and enabling the interrupt.

The I2C_MasterWriteBuf() and I2C_MasterReadBuf()
can clear the write or read completion event of an
initiated transaction.

Fixed conditional check which defines that
stop condition has been generated by the
master.

The I2C_MasterSendStop() can cause lockup if its
execution is interrupted. Only applicable for I2C master
(implemented on UDBs).

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 58 of 61 Document Number: 001-97376 Rev. *C

Version Description of Changes Reason for Changes / Impact

Add protection from the component
interruption to the following APIs:

I2C_SlaveInitReadBuf()

I2C_SlaveInitWriteBuf()

I2C_SlaveClearReadStatus()

I2C_SlaveClearWriteStatus()

I2C_MasterClearStatus()

I2C_MasterStatus()

I2C_MasterClearWriteBuf()

I2C_MasterClearReadBuf()

I2C operations executed by the listed functions are
atomic.

Datasheet updates. Updated Internal I2C Bus Multiplexing section.

Updated External Electrical Connections section and
placed it closer to the top of the document.

Improved description of the APIs (no functional
changes).

Added Component Debug Window and Component
Errata sections.

Reduced the number of global variables shown in the
Global Variables section.

3.30.b Edited datasheet to add Component Errata
section.

Document that the component was changed, but there
is no impact to designs.

3.30.a Edited the datasheet. Updated the diagram in When to Use an I2C
Component section.

Clarified that the fixed-function implementation uses
one interrupt.

3.30 Added MISRA Compliance section. The component has specific deviations described.

Fixed incorrect behavior of the master manual
APIs when lost arbitration occurs.

On a lost arbitration event, the master manual APIs
returned the proper status but did not release the I2C
bus. Code was added to release the bus when the lost
arbitration event takes place.

Added footnote about non-compliant with the
NXP I2C specification in some areas.

Documentation enhancement.

Minor datasheet edits and updates.

3.20 New feature was added. Removed the
internal OE buffer and exposed the input and
output terminals.

This feature allows I2C buses multiplexing inside PSoC.

Changed the control flow of the wake up
sequence to avoid disabling the I2C interrupt.

PSoC 5LP requires an I2C interrupt to be enabled in
order to wake up the device at the event of an address
match.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 59 of 61

Version Description of Changes Reason for Changes / Impact

Moved the Stop interrupt to be handled at the
start of a new transaction.

The Stop interrupt was occurring while the next
transaction was beginning. This caused the interrupt
code to get into an improper state and it did not catch
the Stop interrupt. This issue applied to only the slave
devices.

3.10 Added support PSoC 5LP.

Fixed wrong SDA behavior (the line drives
low) after address byte was received.

When master generates transaction with slave address
expected to be NAKed, the wrong Stop detection is
possible.

The issue only appears in Slave mode with Software
Address Decode and UDB-based implementation.

3.1.a Documentation change describing how the
effective data rate will vary.

For data rates above 400 kbps, the effective clock rate
can vary.

Documentation change describing the
difference between master and multi-master
modes.

When operating in multi-master mode there are special
considerations to take into account to handle correct
interaction with other masters.

3.1 Changed the definition from
I2C_SSTAT_RD_CMPT to
I2C_SSTAT_RD_CMPLT

Changed the definition from
I2C_SSTAT_WR_CMPT to
I2C_SSTAT_WR_CMPLT

To comply with the master definition of read and write
complete flags. The component supports both
definitions, but the I2C_SSTAT_RD_CMPT and
I2C_SSTAT_WR_CMPT will become obsolete.

Added the CYREENTRANT keyword to all
APIs when they are included in the .cyre file.

Not all APIs are truly reentrant. Comments in the
component API source files indicate which functions
are not candidates.

This change is required to eliminate compiler warnings
for functions that are not reentrant used in a safe way:
protected from concurrent calls by flags or Critical
Sections.

3.0.a Minor datasheet edits and updates

3.0 Changed customizer appearance More intuitive and easy to use.

Added the UDB clock tolerance setting. Avoids the appearance of clock warning for many
configurations.

The component in FF implantation with
Enable from Sleep option restores
configuration correctly after exit hibernate.

Fix component behavior in hibernate mode.

The I2C interrupt is enabled after I2C_Start()
is called.

No errors appear when the user forgets to enable
interrupt after I2C_Start() in slave mode.

Added support of internal clock for UDB
implementation.

Functionality enhancement.

Removed functions I2C_SlaveGetWriteByte()
and I2C_SlavePutReadByte()

These functions are not usable.

I2C Master/Multi-Master/Slave PSoC® Creator™ Component Datasheet

Page 60 of 61 Document Number: 001-97376 Rev. *C

Version Description of Changes Reason for Changes / Impact

2.20 Added bootloader communication support to
UDB-based implementation of component.

Allows more than one I2C component that supports
bootloading in the design. This can be used with the
custom bootloader feature included with cy_boot v2.21.

Fixed misplaced start condition detection
during transaction due zero data hold time.

The slave operates correctly with zero data hold time
from the master.

2.10 Added multi-master-slave mode The support of multi-master-slave functionality is added
to component.

Customizer labels and description edits Improve feel and content of component customizer.

Changed I2C bootloader communication
component behavior to suppress clock
stretching on read.

I2C bootloader communication component holds SCL
low forever if a read command is issued before the
start boot process.

Added characterization data to datasheet.

Minor datasheet edits and updates

2.0.a Moved the component into subfolders of the
component catalog

Minor datasheet edits and updates

2.0 Added Sleep/Wakeup and Init/Enable APIs. To support low-power modes, as well as to provide
common interfaces to separate control of initialization
and enabling of most components.

Updated the component to support
Production PSoC 3 and above. Updated the
Configure dialog:

New requirement to support the Production PSoC 3
device, thus a new 2.0 version was created.

Version 1.xx supports PSoC 3 ES2 and PSoC 5 silicon
revisions.

Added configuration of I2C pins connection
port for the wakeup on I2C address match
feature.

The I2C component will be able to wake up the device
from Sleep mode on I2C address match.

Updated the datasheet. Updated the Parameters and Setup, Clock Selection,
and Resources sections to reflect the UDB
Implementation.

Error in sample code has been fixed.

Add Reentrancy support to the component. Allows users to make specific APIs reentrant if
reentrancy is desired.

PSoC® Creator™ Component Datasheet I2C Master/Multi-Master/Slave

Document Number: 001-97376 Rev. *C Page 61 of 61

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use an I2C Component

	Input/Output Connections
	sda – In/Out
	scl – In/Out
	clock – Input *
	reset – Input *
	I2C Bus Multiplexing

	Schematic Macro Information
	Component Parameters
	General Tab
	Mode
	Data rate
	Slave address
	Implementation
	Address decode
	Pins
	Enable wakeup from Sleep Mode
	UDB clock source
	Enable UDB slave fixed placement

	Advanced Tab
	External OE buffer

	Clock Selection
	External Electrical Connections
	Application Programming Interface
	Generic Functions
	void I2C_Start(void)
	void I2C_Stop(void)
	void I2C_EnableInt(void)
	void I2C_DisableInt(void)
	void I2C_Sleep(void)
	void I2C_Wakeup(void)
	void I2C_Init(void)
	void I2C_Enable(void)
	void I2C_SaveConfig(void)
	void I2C_RestoreConfig(void)

	Slave Functions
	uint8 I2C_SlaveStatus(void)
	uint8 I2C_SlaveClearReadStatus(void)
	uint8 I2C_SlaveClearWriteStatus(void)
	void I2C_SlaveSetAddress(uint8 address)
	void I2C_SlaveInitReadBuf(uint8 * rdBuf, uint8 bufSize)
	void I2C_SlaveInitWriteBuf(uint8 * wrBuf, uint8 bufSize)
	uint8 I2C_SlaveGetReadBufSize(void)
	uint8 I2C_SlaveGetWriteBufSize(void)
	void I2C_SlaveClearReadBuf(void)
	void I2C_SlaveClearWriteBuf(void)

	Master and Multi-Master Functions
	uint8 I2C_MasterStatus(void)
	uint8 I2C_MasterClearStatus(void)
	uint8 I2C_MasterWriteBuf(uint8 slaveAddress, uint8 * wrData, uint8 cnt, uint8 mode)
	uint8 I2C_MasterReadBuf(uint8 slaveAddress, uint8 * rdData, uint8 cnt, uint8 mode)
	uint8 I2C_MasterSendStart(uint8 slaveAddress, uint8 R_nW)
	uint8 I2C_MasterSendRestart(uint8 slaveAddress, uint8 R_nW)
	uint8 I2C_MasterSendStop(void)
	uint8 I2C_MasterWriteByte(uint8 theByte)
	uint8 I2C_MasterReadByte(uint8 acknNak)
	uint8 I2C_MasterGetReadBufSize(void)
	uint8 I2C_MasterGetWriteBufSize(void)
	void I2C_MasterClearReadBuf (void)
	void I2C_MasterClearWriteBuf (void)

	Multi-Master-Slave Functions
	Global Variables
	Bootloader Support
	void I2C_CyBtldrCommStart(void)
	void I2C_CyBtldrCommStop(void)
	void I2C_CyBtldrCommReset(void)
	cystatus I2C_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	cystatus I2C_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

	Macro Callbacks
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Functional Description
	Slave Operation
	Master/Multi-Master Operation
	Multi-Master-Slave Mode Operation
	Start of Multi-Master-Slave Transfer
	Interrupt Function Operation
	Manual Function Operation

	Wakeup on Hardware Address Match
	How it Works
	Wakeup and Clock Stretching
	Bootloader Protocol Interaction with I2C Communication Component
	Internal I2C Bus Multiplexing

	Interrupt Service Routine

	Registers
	Fixed-Function Master/Slave Registers
	UDB Master
	I2C_CFG
	I2C_CSR
	I2C_INT_MASK
	I2C_DATA
	I2C_GO

	UDB Slave
	I2C_CFG
	I2C_CSR
	I2C_INT_MASK
	I2C_ADDRESS
	I2C_DATA
	I2C_GO

	Component Debug Window
	Resources
	DC and AC Electrical Characteristics
	DC Characteristics (FF Implementation)
	DC Characteristics (UDB Implementation)
	AC Characteristics (FF Implementation)
	AC Characteristics (UDB Implementation)

	Component Errata
	Component Changes

